Laser Scanner and Camera Fusion for Automatic Obstacle Classification in ADAS Application

  • Aurelio Ponz
  • C. H. Rodríguez-Garavito
  • Fernando García
  • Philip Lenz
  • Christoph Stiller
  • J. M. Armingol
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 579)


Reliability and accuracy are key in state of the art Driving Assistance Systems and Autonomous Driving applications. These applications make use of sensor fusion for trustable obstacle detection and classification in any meteorological and illumination condition. Laser scanner and camera are widely used as sensors to fuse because of its complementary capabilities. This paper presents some novel techniques for automatic and unattended data alignment between sensors, and Artificial Intelligence techniques are used to use laser point clouds not only for obstacle detection but also for classification.. Information fusion with classification information from both laser scanner and camera improves overall system reliability.


ADAS Computer vision Lidar Advanced driving assistance system Laser Stereo camera Sensor fusion 



This Work Was Supported by the Spanish Government through the CICYT Project (TRA2013-48314-C3-1-R).


  1. 1.
    Debattisti, S., Mazzei, L., Panciroli, M.: Automated extrinsic laser and camera inter-calibration using triangular targets. In: 2013 Intelligent Vehicles Symposium (IV), pp. 696−701. IEEE (2013)Google Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support vector network. Mach. Learn. 20, 1–25 (1995)zbMATHGoogle Scholar
  3. 3.
    Fremont, V., Bonnifait, P.: Extrinsic calibration between a multi-layer lidar and a camera. In: 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (2008)Google Scholar
  4. 4.
    García, F., Jiménez, F., Naranjo, J.E., Zato, J.G., Aparicio, F., Armingol, J.M., de la Escalera, A.: Environment perception based on LIDAR sensors for real road applications. Robotica 30, 185–193 (2012)CrossRefGoogle Scholar
  5. 5.
    García, F., García, J., Ponz, A., de la Escalera, A., Armingol, J.M.: Context aided pedestrian detection for danger estimation based on laser scanner and computer vision. Expert Syst. Appl. 41(15), 6646–6661 (2014)CrossRefGoogle Scholar
  6. 6.
    Kwak, K., Huber, D.F., Badino, H., Kanade, T.: Extrinsic calibration of a single line scanning lidar and a camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3283−3289 (2011)Google Scholar
  7. 7.
    Li, Y., Ruichek, Y., Cappelle, D.: 3D triangulation based extrinsic calibration between a stereo vision system and a LIDAR. In: 14th International IEEE Conference on Intelligent Transpprtation Systems, pp. 797−802 (2011)Google Scholar
  8. 8.
    Li, Y., Liu, Y., Dong, L., Cai, X.: An algorithm for extrinsic parameters calibration of a camera and a laser range finder using line features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2007)Google Scholar
  9. 9.
    Lisca, G., Jeong, P.J.P., Nedevschi, S.: Automatic one step extrinsic calibration of a multi layer laser scanner relative to a stereo camera. In: 2010 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) (2010)Google Scholar
  10. 10.
    Martín, D., García, F., Musleh, B., Olmeda, D., Marín, P., Ponz, A., Rodríguez, C.H., Al-Kaff, A., de la Escalera, A., Armingol, J.M.: IVVI 2.0: an intelligent vehicle based on computational perception. Expert Syst. Appl. 41, 7927–7944 (2014)CrossRefGoogle Scholar
  11. 11.
    Premebida, C., Ludwig, O., Nunes, U.: LIDAR and vision-based pedestrian detection system. J. Field Robot. 26, 696–711 (2009)CrossRefGoogle Scholar
  12. 12.
    Premebida, C., Ludwig, O., Silva, M., Nunes, U.: A cascade classifier applied in pedestrian detection using laser and image-based features. In: Transportation, pp. 1153−1159 (2010)Google Scholar
  13. 13.
    Rodríguez-Garavito, C.H., Ponz, A., García, F., Martín, D., de la Escalera, A., Armingol, J.M.: Automatic laser and camera extrinsic calibration for data fusion using road plane (2014)Google Scholar
  14. 14.
    Sick, LD-MRS Manual. SICK AG Waldkirch, Reute, Germany (2009)Google Scholar
  15. 15.
    Spinello, L., Siegwart, R.: Human detection using multimodal and multidimensional features. In: IEEE International Conference on Robotics and Automation, pp. 3264−3269 (2008). doi: 10.1109/ROBOT.2009.4543708
  16. 16.
    WHO, Global status report on road safety. Time for action. WHO library cataloguing-in-publication data, World Health Organization, Geneva, Switzerland (2009). ISBN 978-9-241563-84-0Google Scholar
  17. 17.
    Zezhi, C., Pears, N., Freeman, M., Austin, J.: Road vehicle classification using support vector machines. 2009 IEEE Int. Conf. Intell. Comput. Intell. Syst. ICIS 2009 4, 214–218 (2009). doi: 10.1109/ICICISYS.2009.5357707Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Aurelio Ponz
    • 1
  • C. H. Rodríguez-Garavito
    • 2
  • Fernando García
    • 1
  • Philip Lenz
    • 3
  • Christoph Stiller
    • 3
  • J. M. Armingol
    • 1
  1. 1.Intelligent Systems LabUniversidad Carlos III de MadridLeganésSpain
  2. 2.Automation Engineering DepartmentUniversidad de La SalleBogotáColombia
  3. 3.Institut für Mess- Und RegelungstechnikKarlsruher Institut für TechnologieKarlsuheGermany

Personalised recommendations