Skip to main content

Effective Method for Continuous Measurement of Bedload Transport Rates by Means of River Bedload Trap (RBT) in a Small Glacial High Arctic Gravel-Bed River

  • Chapter
  • First Online:
Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The determination of the threshold values and parameters of bedload transport in river beds is necessary for undertaking effective hydrotechnical works, including anti-flood, retention, energy engineering measures, etc. This paper presents a new device for the continuous measurement of movable bed-surface particles, namely the “River Bedload Trap—RBT” [European patent No. EP 2333161]. The article discusses the methodological difficulties in the effective estimation of bedload transport rate. It presents an innovative measurement strategy and device with the potential to satisfy the stringent requirements set by fluvial geomorphology and hydrotechnical analyses. The applied technical solution based on direct continuous measurement and anchored RBT sets is analysed in detail and compared to the existing measurement systems. The study confirmed the high effectiveness of the implemented measurement strategy and technical solution for quantitative bedload transport rates and flux. The application of RBT for continuous monitoring of bedload flux in the conditions of High Arctic gravel-bed rivers was evidenced to permit obtaining high efficiency and credible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashworth PJ, Ferguson RI (1986) Interrelationships of channel processes, changes and sediments in a proglacial braided river. Geogr Ann 68A:361–371

    Article  Google Scholar 

  • Beylich AA, Warburton J (eds) (2007) Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual, 1st edn. Norwegian Geological Survey Report, 158 pp

    Google Scholar 

  • Beylich AA, Laute K (2014) Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology 218:72–87

    Article  Google Scholar 

  • Bogen J, Moen K (2003) Bed load measurements with a new passive acoustic sensor. In: Bogen J, Fergus T, Walling DE (eds) Erosion and sediment transport measure-ment in rivers: technological and methodological advances, vol 283. IAHS, Wallingford, pp 181–192

    Google Scholar 

  • Bogen J, Fergus T, Walling DE (eds) (2003) Erosion and sediment transport in rivers: technological and methodological advances, vol 283. IAHS, Wallingford, 238 pp

    Google Scholar 

  • Bunte K, Abt SR (2009) Transport relationships between bedload traps and a 3-inch Helley-Smith sampler in coarse gravel-bed streams and development of adjustment functions. Report submitted to the Federal Interagency Sedimentation Project, Vicksburg, MS, 138 pp

    Google Scholar 

  • Bunte K, Abt SR, Potyondy JP, Swingle KW (2008) A comparison of coarse bedload transport measured with bedload traps and Helley-Smith samplers. Geodin Acta 21(1/2):53–66. http://www.treesearch.fs.fed.us/pubs/30814

    Google Scholar 

  • Bunte K, Abt SR, Potyondy JP, Ryan SE (2004) Measurement of coarse gravel and cobble transport using a portable bedload trap. J Hydraul Eng 130:879–893

    Article  Google Scholar 

  • Emmett WW (1980) A field calibration of the sediment-trapping characteristics of the Helley–Smith bed load sampler. US Geological Survey Professional Paper 1139, 44 pp

    Google Scholar 

  • Ergenzinger P, Schmidt K-H (eds) (1994) Dynamics and geomorphology of mountain rivers. lecture notes in earth sciences,vol 52. Springer, Berlin, Heidelberg, 326 pp

    Google Scholar 

  • Froehlich W (2003) Monitoring bed load transport using acoustic and magnetic devices. In: Bogen J, Fergus T, Walling DE (eds) Erosion and sediment transport measurement in rivers. Technological and methodological advances. IAHS Publication 283:201–210

    Google Scholar 

  • Garcia C, Laronne JB, Sala M (2000) Continuous monitoring of bedload flux in a mountain gravel-bed river. Geomorphology 34:23–31

    Article  Google Scholar 

  • Gurnell AM, Clark MJ (eds) (1987) Glacio-fluvial sediment transfer: an alpine perspective. Wiley, Chichester, 524 pp

    Google Scholar 

  • Hammer KM, Smith ND (1983) Sediment production and transport in proglacial stream: Hilda Glacier, Alberta, Canada. Boreas 12:91–106

    Article  Google Scholar 

  • Hassan MA, Church M, Lisle TE, Brardinoni F, Benda L, Grant GE (2005) Sed-iment transport and channel morphology of small, forested streams. J Am Water Res Assoc 41:853–876

    Article  Google Scholar 

  • Hayward JA, Sutherland AJ (1974) The Torlesse stream vortex-tube sediment trap. J Hydrol (New Zeland) 13:41–53

    Google Scholar 

  • Helley EJ, Smith W (1971) Development and calibration of a pressure-difference bedload sampler. US Geological Survey Open-File, Report 18 pp

    Google Scholar 

  • Kociuba W, Janicki G, Siwek K (2010) Dynamics of changes the bed load outflow from a small glacial catchment (West Spitsbergen). In: de Wrachien D, Brebbia CA (eds) Monitoring, Simulation, Prevention and Remediation of Dense Debris Flow III. WITPress, Southampton, Boston, pp 261–270

    Chapter  Google Scholar 

  • Kociuba W, Janicki G, Siwek K, Gluza A (2012) Bedload transport as an indicator of contemporary transformations of arctic fluvial systems. In: de Wrachien D, Brebbia CA, Mambretti S (eds) Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows IV. WIT Press Southampton, Boston, pp 125–135

    Chapter  Google Scholar 

  • Kociuba W, Janicki G (2013). Fluvial processes. In: Zagórski P. Harasimiuk M. Rodzik J.(eds) The geographical environment of NW part of Wedel Jarlsberg land (Spitsbergen, Svalbard), Wydawnictwo UMCS, Lublin, pp 192–211

    Google Scholar 

  • Kociuba W, Janicki G (2014) Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen). Geomorphology 212:58–71

    Article  Google Scholar 

  • Kociuba W, Janicki G, Siwek K (2014) Variability of sediment transport in the Scott River catchment (Svalbard) during the hydrologically active season of 2009. Quaestiones Geographicae 33(1):39–49

    Article  Google Scholar 

  • Kociuba W, Janicki G (2015) Changeability of movable bed-surface particles in natural, gravel-bed channels and its relation to bedload grain size distribution (Scott River, Sval-bard). Geogr Ann 97A:507–521

    Google Scholar 

  • Laronne JB, Alexandrov Y, Bergman N, Cohen H, Garcia C, Habersack H, Powell DM, Reid I (2003) The continuous monitoring of bed load flux in various fluvial environments. IAHS Publication 283:134–145

    Google Scholar 

  • Lewis J (1991) An improved bedload sampler. In: Proceedings of the 5th Federal Inter-agency Sedimentation Conference, Las Vegas, Nevada, Subcommittee of the Interagency Advisory Committee on Water Data, pp 61–68

    Google Scholar 

  • Milhous R (1973). Sediment transport in a gravel-bottomed stream. PhD thesis, Oregon State University, Corvallis, USA, 232 pp

    Google Scholar 

  • Orwin JF, Lamoureux SF, Warburton J, Beylich AA (2010). A framework for char-acterizing fluvial sediment fluxes from source to sink in cold environments. Geogr Ann 92A:155–176

    Google Scholar 

  • Østrem G, Bridge CW, Rannie WF (1967) Glacio-hydrology, discharge and sediment transport in the Decade Glacier area, Baffin Island, N.W.T. Geogr Ann 49A:268–282

    Article  Google Scholar 

  • Powell DM, Reid I, Laronne JB, Frostick LE (1998) Cross stream variability of bed-load flux in narrow and wide ephemeral channels during desert flash floods. In: Klingeman PC, Beschta RL, Komar PD, Bradley JB (eds) Gravel-Bed Rivers in the Environment. Water Resources Publications LLC, Highlands Ranch, Colorado, pp 177–196

    Google Scholar 

  • Powell DM, Reid I, Laronne JB (2001) Evolution of bed load grain size distribution with increasing flow strength and the effect of flow duration on the caliber of bed load sediment yield in ephemeral gravel bed rivers. Water Resources Research 37(5):1463–1474

    Google Scholar 

  • Rachlewicz G, Zwoliński Z (2012) Wykorzystanie urządzenia RBT w pomiarach materiału wleczonego. Efektywność urządzenia RBT na tle innych bezpośrednich metod pomiaru [Use the device RBT in measurements of bed material. The effectiveness of the device RBT to other direct methods of measurement]. MS: 22 pp. (in Polish)

    Google Scholar 

  • Raven E, Lane SN, Ferguson R (2010) Using sediment impact sensors to improve the morphological sediment budget approach for estimating bedload transport rates. Geomorphology 119:125–134

    Google Scholar 

  • Reid I, Layman JT, Frostick LE (1980) The continuous measurement of bedload discharge. J Hydraul Res 18:243–249

    Article  Google Scholar 

  • Reid I, Laronne JB, Powell M (2002) The Nahal Yatir bedload database: sediment dynamics in a gravel-bed ephemeral stream. Earth Surf Proc Land 20:845–857

    Article  Google Scholar 

  • Rickenmann D, McArdell BW (2007) Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors. Earth Surf Proc Land 32:1362–1378

    Article  Google Scholar 

  • Rickenmann D, Turowski JM, Fritschi B, Klaiber A, Ludwig A (2012) Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf Process Landforms 37:1000–1011

    Article  Google Scholar 

  • Rickenmann D, Laronne JB, Turowski JM, Vericat D (eds) (2013). International workshop of acoustic and seismic monitoring of bedload and mass movements. Birmensdorf, Switzerland, 109 pp

    Google Scholar 

  • Ryan SE, Porth LS (1999) A field comparison of three pressure-difference bedload samplers. Geomorphology 30:307–322

    Article  Google Scholar 

  • Sear DA, Damon W, Booker DJ, Anderson DG (2000) A load cell based continuous recording bedload trap. Earth Surf Proc Land 25:672–689

    Article  Google Scholar 

  • Szpikowski J, Szpikowska G, Zwoliński Z, Kostrzewski A (2014) Magnitude of Fluvial Transport and Rate of Denudation in A Non‐Glacierised Catchment in A Polar Zone, Central Spitsbergen. Geogr Ann 96A:447–464

    Google Scholar 

  • Tacconi P, Billi P (1987) Bed load transport measurement by a vortex-tube trap on Vir-ginio Creek, Italy. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment Transport in Gravel-Bed Rivers. Wiley, Chichester, pp 583–615

    Google Scholar 

  • Turowski JM, Rickenmann D, Dadson SJ (2010) The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology 57:1126–1146

    Article  Google Scholar 

  • Turowski JM, Badoux A, Rickenmann D (2011) Start and end of bedload transport in gravel-bed streams. Geophys Res Lett 38:L04401. doi:10.1029/2010GL046558

    Article  Google Scholar 

  • Vatne G, Naas ØT, Skarholen T, Beylich AA, Berthling I (2008) Bed load transport in a steep snowmelt-dominated mountain stream as inferred from impact sensors. Norw. J Geogr NorGeogr Tidsskr 62:66–74

    Article  Google Scholar 

  • Warburton J (1990) An alpinie proglacial fluvial sediment budget. Geogr Ann 72A:261–272

    Article  Google Scholar 

  • Zwoliński Z (1989) Geomorficzne dostosowywanie się koryta Parsęty do aktualnego reżimu rzecznego. Dokum Geogr 3(4):1–144 (in Polish)

    Google Scholar 

  • Zwoliński Z (1993). Dynamics of bed load transport in the Parsęta River channel, Poland. In: Marzo M, Puigdefábregas C.(eds) Alluvial Sedimentation Special Publications of the International Association of Sedimentologists 17: 77–87

    Google Scholar 

  • Zwoliński Z (2007) Hydrological polar monitoring—methodical proposition. Monit Nat Environ 8:29–39 (in Polish)

    Google Scholar 

Download references

Acknowledgements

The study was supported by grant of the National Science Centre No. 2011/01/B/ST10/06996 and project POIG.01.03.02-00-082/10, EU in the scope of the Operational Programme Innovative Economy, 2007–2013, Priority 1. ‘Research and development of modern technologies’. I am particularly grateful to all of the colleagues included in the team of the Maria Curie-Skłodowska University Polar Expeditions for their collaboration in the field and at other stages of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Kociuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kociuba, W. (2016). Effective Method for Continuous Measurement of Bedload Transport Rates by Means of River Bedload Trap (RBT) in a Small Glacial High Arctic Gravel-Bed River. In: Rowiński, P., Marion, A. (eds) Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-27750-9_23

Download citation

Publish with us

Policies and ethics