Skip to main content

Catalytic Aspects in the Synthesis of a Promising Energetic Material

  • Chapter
  • First Online:

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

Synthesis of a promising energetic material CL-20 requires the two-step catalytic re-functionalization of N-bonded benzyl groups (CH2-C6H5) of hexabenzylhexaazaisowurtzitane (HBIW) into acetyl (-CO-CH3) or formyl groups (-CHO) over Pd/C catalyst before its direct nitrolysis into final CL-20 product. Utilization of an expensive palladium-based catalyst deactivated fast during reaction contributes substantially to a high CL-20 cost being a significant hurdle limiting wide application of CL-20 in a propellant formulation. In this work a careful systematic study was performed to improve efficiency, resistance to deactivation, and life-time of Pd/C catalysts as well as to elucidate the optimal hydrodebenzylation reaction conditions. The catalyst activity decrease for Pd/C was found to be caused mainly by agglomeration of metal nanoparticles, Pd re-deposition on inaccessible inner areas of the carbon support, and blocking of the metallic palladium with by-products of intermediates destruction. Different ways to enhance Pd/C catalytic activity through an improvement of Pd dispersion and resistance of Pd particles to agglomeration and re-oxidation as well as through an increase of Pd accessibility for large HBIW molecules were proposed. The two-step HBIW debenzylation with a separately repeated use of the catalyst in each catalytic stage was considered as a promising way to increase catalyst productivity and to diminish CL-20 production costs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The suggested “agglomeration” mechanism of Pd particles in catalysis is quite different from that occurring for Al particles in propellant burning.

Abbreviations

AcCl:

Acetyl chloride

Ac2O:

Acetic acid anhydryd

AcOH:

Acetic acid

CCD:

Central composite design

CL-20:

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.03,11.05,9]dodecane

CFC:

Catalytic filamentous carbon

EXAFS:

Extended X-Ray Absorption Fine Structure

DMA:

Dimethyl acetamide

Dpore av :

Average pore size, nm

DMF:

Dimethyl formamide

GC:

Gas chromatography

GC/MS:

Gas chromatography–mass spectrometry

HBIW:

Hexabenzylhexaazaisowurtzitane

HEM:

High energetic material

HNIW:

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9] dodecane

HPLC:

High-performance liquid chromatography

HRTEM:

High Resolution Transmission Electron Microscopy

Is :

Specific impulse

Pd(OAc)2 :

Palladium acetate

PhBr:

Phenyl bromide

(PhCO)2O:

Benzoic anhydride

Ssp :

Specific surface area, m2 g−1

TADBIW:

4,10-dibenzyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane

TADFIW:

4,10-diformyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane

TADEIW:

Tetraacetyldiethylhexaazaisowurtzitane

TAIW:

Tetraacetylhexaazaisowurtzitane

TADNIW:

Tetraacetyldinitrosohexaazaisowurtzitane

TEM:

Transmission Electron Microscopy

V:

Porous volume, mL g-1

XANES:

X-ray Absorption Near Edge Structure

XPS:

X-ray Photoelectron Spectroscopy

References

  1. Ananikov VP, Khemchyan LL, Ivanova YV, Bukhtiyarov VI, Sorokin AM, Prosvirin IP, Vatsadze SZ, Medved’ko AV, Nuriev VN, Dilman AD, Levin VV, Koptyug IV, Kovtunov KV, Zhivonitko VV, Likholobov VA, Romanenko AV, Simonov PA, Nenajdenko VG, Shmatova OI, Muzalevskiy VM, Nechaev MS, Asachenko AF, Morozov OS, Dzhevakov PB, Osipov SN, Vorobyeva DV, Topchiy MA, Zotova MA, Ponomarenko SA, Borshchev OV, Luponosov YN, Rempel AA, Valeeva AA, Stakheev AY, Turova OV, Mashkovsky IS, Sysolyatin SV, Malykhin VV, Bukhtiyarova GA, Terent’ev AO, Krylov IB (2014) Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russ Chem Rev 83:885–985. doi:10.1070/RC2014v83n10ABEH004471

    Article  Google Scholar 

  2. Singh H (2005) Current trend of R&D in the field of high energy materials (HEMs): an overview. Explosion 15:120–132

    Google Scholar 

  3. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotechnics 22:249–255. doi:10.1002/prep.19970220502

    Article  Google Scholar 

  4. Bumpus JA (2012) A theoretical investigation of the ring strain energy, destabilization energy, and heat of formation of CL-20. Adv Phys Chem. doi:10.1155/2012/175146, Article ID 175146, 7 pages

    Google Scholar 

  5. http://www.gizmag.com/cl-20-high-power-military-explosive/24059/

  6. Willer RL (2013) The early history of CL-20 (HNIW). New trends in research of energetic materials, Czech Republic, pp 384–397

    Google Scholar 

  7. Nair UR, Sivabalan R, Gore GM, Geetha M, Asthana SN, Singh H (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations: a review. Combus Explo Shock Waves 41:121–132. doi:10.1007/s10573-005-0014-2

    Article  Google Scholar 

  8. Sysolyatin SV, Lobanova AA, Chernikova YT, Sakovich GV (2005) Methods of synthesis and properties of hexanitrohexaazaisowurtzitane. Russ Chem Rev 74:757–764. doi:10.1070/RC2005v074n08ABEH001179

    Article  Google Scholar 

  9. Sysolyatin SV, Sakovich GV, Surmachev VN (2007) Methods for the synthesis of polycyclic nitramines. Russ Chem Rev 76:673–680. doi:10.1070/RC2007v076n07ABEH003716

    Article  Google Scholar 

  10. Nielsen AT (1997) Caged polynitramine compound. US Patent 5,693,794, 2 Dec 1997

    Google Scholar 

  11. Bellamy AJ (1995) Reductive debenzylation of hexabenzylhexaazaisowurtzitane. Tetrahedron Lett 51:4711–4722. doi:10.1016/0040-4020(95)00155-2

    Article  Google Scholar 

  12. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812. doi:10.1016/S0040-4020(98)83040-8

    Article  Google Scholar 

  13. Nielsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Flippen-Andersen JL (1990) Polyazapolycyclics by condensation of aldehydes with amines. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-[5.5.0.03.11.05.9]dodecanes from glyoxal and benzylamines. J Org Chem 55:1459–1466. doi:10.1021/jo00292a015

    Article  Google Scholar 

  14. Nielsen AT, Nissan RA, Chafin AP, Gilardi RD, George CF (1992) Polyazapolycyclics by condensation of aldehydes with amines. 3. Formation of 2,4,6,8-tetrabenzyl-2,4,6,8-tetraazabicyclo[3.3.0]octanes from formaldehyde, glyoxal, and benzyl amine. J Org Chem 57:6756–6759. doi:10.1021/jo00051a016

    Article  Google Scholar 

  15. Wang C, Ou Y, Chen B (2000) One-pot synthesis of hexanitrohexaazaisowurtzitane. Beijing Ligong Daxue Xuebao Trans Beijing Inst Technol 20:521–523

    Google Scholar 

  16. Latypov NV, Wellmar U, Goede P, Bellamy AJ (2000) Synthesis and scale-up of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20). J Org Process Res Dev 4:156–158. doi:10.1021/op990097d

    Article  Google Scholar 

  17. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim 73:913–922. doi:10.1023/A:1025859203860

    Article  Google Scholar 

  18. Sanderson AJ, Wardle RB, Warner KF (2000) Process for making 2,4,6, 8,10,12- hexanitro- 2,4,6,8,10, 12- hexaazatetracyclo [5.5.0.05.9.03.11]-dodecane. WO2000052011 8 Sep 2000

    Google Scholar 

  19. Kawabe S, Miya H, Kodama T, Miyake N (1998) Process for the preparation of hexanitrohexaazaisowurtzitanes. PCT Int. Appl. WO 9805666 12 Feb 1998

    Google Scholar 

  20. Zhenhua M, Hua Q, Lü C (2013) Nitration of TAIW to synthesize CL-20 using N2O5/HNO3 as nitrating agent. Rasayan J Chem 6:29–33

    Google Scholar 

  21. Chung HY, Kil HS, Choi IY, Chu CK, Lee IM (2009) New precursors for hexanitrohexaazaisowurtzitane (HNIW, CL-20). J Heterocycl Chem 37:1647–1649. doi:10.1002/jhet.5570370640

    Article  Google Scholar 

  22. Chen JP, Penquite CR, Thakur DS (2001) Precious metal catalyst for debenzylation. US Patent 6,992,037, 31 Jan 2006

    Google Scholar 

  23. Cagnon G, Eck G, Herve G, Jacob G (2007) Process for the 2-stage synthesis of hexanitrohexaazaisowurtzitane starting from a primary amine. US Patent 7,279,572, 9 Oct 2007

    Google Scholar 

  24. Chapman RD, Hollins RA (2008) Benzylamine-free, heavy-metal-free synthesis of CL-20 via hexa(1-propenyl)hexaazaisowurtzitane. J Energetic Mater 26:246–273. doi:10.1080/07370650802182385

    Article  Google Scholar 

  25. Mandal K, Pant CS, Kasar SM, Soman T (2009) Process optimization for synthesis of CL-20. J Energetic Mater 27:231–246. doi:10.1080/07370650902732956

    Article  Google Scholar 

  26. Bayat Y, Ebrahimi H, Fotouhi-Far F (2012) Optimization of reductive debenzylation of hexabenzylhexaazaisowurtzitane (the key step for synthesis of HNIW) using response surface methodology. Org Process Res Dev 16:1733–1738. doi:10.1021/op300162d

    Article  Google Scholar 

  27. Aldoshin SM, Aliev ZG, Goncharov TK, Korchagin DV, Milekhin YM, Shishov NI (2011) New conformer of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). Crystal and molecular structures of the CL-20 solvate with glyceryl triacetate. Russ Chem Bull 60:1394–1400. doi:10.1007/s11172-011-0209-5

    Article  Google Scholar 

  28. Lapina YT, Lobanova АА, Savitskii SА, Zolotuxina II, Kireeva АV (2012) Method of synthesis of gamma-polymorphous modification 2,4,6, 8,10,12- hexanitro- 2,4,6,8,10,12- hexaazatetracyclo [5.5.0.05.9.03.11]-dodecane. RU Patent 2,447,075, 10 Apr 2012

    Google Scholar 

  29. Kodama T, Ishihara N, Minoura H, Miyake N, Yamamatsu S (2002) Method of acylating of hexakis(phenylmethyl)hexaazaizowurtzitane. WO 99/19328. RU Patent 2,182,151, 10 May 2002

    Google Scholar 

  30. Kozlov AI, Zbarskii VL, Ignatov АV, Pinchuk YА, Kuznetsov LА, Merkin АА, Komarov АА, Rybin VЕ, Mikhailov YM, Mizgunova ЕN, Vidyaeva ТI (2012) Method of preparation of substituted hexaazaizowurtzitane. RU Patent 2,451,020, 20 Apr 2012

    Google Scholar 

  31. Kozlov AI, Zbarskii VL, Grunskii VN, Yudin NV, Kuznetsov LA, Merkin AA, Komarov AA, Kozlov IA, Rybin VE., Mikhailov YM, Mizgunova EN, Vidyaeva TI (2012) Method of debenzylation of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane. RU Patent 2,448,110, 20 May 2012

    Google Scholar 

  32. Bernotas RC, Cube RV (1990) The use of Pearlman’s catalyst for selective N-debenzylation in the presence of benzyl ethers. Synth Commun 20:1209–1212

    Article  Google Scholar 

  33. Koskin AP, Simakova IL, Parmon VN (2007) Study of the palladium catalyst deactivation in synthesis of 4,10-diformyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane. React Kinet Cat Lett 92:293–302. doi:10.1007/s11144-007-5203-4

    Article  Google Scholar 

  34. Koskin AP, Simakova IL, Parmon VN (2007) Reductive debenzylation of hexabenzylhexaazaisowurtzitane – the key step of the synthesis of polycyclic nitramine hexanitrohexaazaisowurtzitane. Russ Chem Bull 56:2370–2375. doi:10.1007/s11172-007-0377-5

    Article  Google Scholar 

  35. Simakova IL, Prosvirin IP, Kriventsov VV, Parmon VN (2012) The effect of preparation conditions on the catalytic and physical-chemical properties of Pd/C in reductive debenzylation of hexabenzylhexaazaisowurtzitane. J Siber Fed Univ Chem 3:238–245 (Rus, abstr. Engl.)

    Google Scholar 

  36. Koskin AP, Simakova IL, Troitskii SY, Parmon VN (2009). The catalyst, its preparation and process for preparing tetraacetyldiformylhexaazaisowurtzitane. RU Patent 2,359,753, 27 June 2009

    Google Scholar 

  37. Toebes ML, van Dillen JA, de Jong KP (2001) Synthesis of supported palladium catalysts. J Mol Cat A Chem 173:75–98. doi:10.1016/S1381-1169(01)00146-7

    Article  Google Scholar 

  38. Kent R, Evans R (1972) Carbon supported palladium catalyst. US Patent 3,804,779, 16 Apr 1974

    Google Scholar 

  39. Norris WP, Nielsen AT (1994) Catalitic synthesis of caged polynitramine compounds. US Patent 8,017,768, 1 Sep 2011

    Google Scholar 

  40. Wardle RB, Edwards WW (1995) Rapidly adding hydrogen immediately upon adding acetic anhydride and palladium catalyst to reaction mixture of hexabenzylhexaazaisowurzitane (HBIW), cosolvent, and bromine source; by-product inhibition, simplification. US Patent 5,739,325, 14 Apr 1998

    Google Scholar 

  41. Simakova OA, Simonov PA, Romanenko AV, Simakova IL (2008) Preparation of Pd/C catalysts via deposition of palladium hydroxide onto sibunit carbon and their application to partial hydrogenation of rapeseed oil. React Kinet Catal Lett 95:3–12. doi:10.1007/s11144-008-5373-8

    Article  Google Scholar 

  42. Semikolenov VA, Lavrenko SP, Zaikovskii VI (1994) Development of supported palladium particles in Pd/C catalysts. Kinet Catal 35:573–576

    Google Scholar 

  43. Maki-Arvela P, Kuusisto J, Sevilla EM, Simakova IL, Mikkola J-P, Myllyoja J, Salmi T, Murzin DY (2008) Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Appl Catal A Gen 345:201–212. doi:10.1016/j.apcata.2008.04.042

    Article  Google Scholar 

  44. Simakova IL, Parmon VN (2013) Synthesis of 4,10-diformyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane over palladium on carbon. In: Abstracts of the 10th congress on catalysis applied to fine chemicals, Abo Akademi University, Turku/Abo, June 16–19, p 68

    Google Scholar 

  45. Albers P, Pietsch J, Parker SF (2001) Poisoning and deactivation of palladium catalysts. J Mol Catal A Chem 173:275–286. doi:10.1016/S1381-1169(01)00154-6

    Article  Google Scholar 

  46. Simakova IL, Prosvirin IP, Parmon VN (2013) The insight on 4,10-diformyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane synthesis over colloidal Pd/C. In: Abstracts of the 9th high energy materials workshop, Institute of space and astronautical science/Japan aerospace exploration agency, October 7–9, О-61, pp 138–139

    Google Scholar 

  47. Blaser H-U, Indolese A, Schnyder A, Steiner H, Studer M (2001) Supported palladium catalysts for fine chemicals synthesis. J Mol Catal A Chem 173:3–18. doi:10.1016/S1381-1169(01)00143-1

    Article  Google Scholar 

  48. Gurrath M, Kuretzky T, Boehm HP, Okhlopkova LB, Lisitsyn AS, Likholobov VA (2000) Palladium catalysts on activated carbon supports: influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 38:1241–1255. doi:10.1016/S0008-6223(00)00026-9

    Article  Google Scholar 

  49. Simonov PA, Troitskii SY, Likholobov VA (2000) Preparation of the Pd/C Catalysts: a molecular-level study of active site formation. Kinet Catal 41:255–269. doi:10.1007/BF02771428

    Article  Google Scholar 

  50. Wardle RB, Hinshaw JC (1992) Method for making new polycyclic polyamides as precursors for energetic polycyclic polynitramine oxidizers. US Patent 6,147,209, 14 Nov 2000

    Google Scholar 

  51. Kovács E, Thurner A, Farkas F, Faigl F, Hegedűs L (2014) Hydrogenolysis of N- and O-protected hydroxyazetidines over palladium: efficient and selective methods for ring opening and deprotecting reactions. J Mol Catal A Chem 395:217–224. doi:10.1016/j.molcata.2014.08.027

    Article  Google Scholar 

  52. Maxted EB, Biggs MS (1957) 764. The catalytic toxicity of nitrogen compounds. Part I. Toxicity of ammonia and of amines. J Chem Soc 3844–3847. doi:10.1039/JR9570003844

  53. Hegedűs L, Máthé T (2002) Hydrogenation of pyrrole derivatives. Part V. Poisoning effect of nitrogen on precious metal on carbon catalysts. Appl Catal A Gen 226:319–322. doi:10.1016/S0926-860X(01)00898-5

    Article  Google Scholar 

  54. Studer M, Blaser H-U (1996) Influence of catalyst type, solvent, acid and base on the selectivity and rate in the catalytic debenzylation of 4-chloro-N, N-dibenzylaniline with Pd/C and H2. J Mol Catal A Chem 112:437–445. doi:10.1016/1381-1169(96)00151-3

    Article  Google Scholar 

  55. Simakova IL, Rozmysłowicz B, Simakova O, Mäki-Arvela P, Simakov A, Murzin DY (2011) Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels. Top Catal 54:460–466. doi:10.1007/s11244-011-9608-y

    Article  Google Scholar 

  56. Snåre M, Mäki-Arvela P, Simakova IL, Myllyoja J, Murzin DY (2009) Overview of the catalytic methods of next generation biodiesel production from natural oils and fats. Russ J Phys Chem B 3:17–25. doi:10.1134/S1990793109070021

    Article  Google Scholar 

  57. Madsen AT, Rozmyszowicz B, Simakova IL, Kilpio T, Leino A-R, Kordás K, Eränen K, Mäki-Arvela P, Murzin DY (2011) Step changes and deactivation behavior in the continuous decarboxylation of stearic acid. Ind Eng Chem Res 50:11049–11058. doi:10.1021/ie201273n

    Article  Google Scholar 

  58. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  59. Sysolyatin SV, Kalashnikov AI, Malykhin VV, Surmacheva IA, Sakovich GV (2010) Reductive debenzylation of 2,4,6,8,10,12-hexaazaisqwurtzitane. Int J Energ Mater Chem Propuls 9:365–375. doi:10.1615/IntJEnergeticMaterialsChemProp.v9.i4.60

    Google Scholar 

  60. Kalashnikov AI, Sysolyatin SV, Sakovich GV, Surmacheva IA, Surmachev VN, Lapina YT (2009) Debenzylation of 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03.1105.9]dodecane. Russ Chem Bull 58:2164–2168. doi:10.1007/s11172-009-0295-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin N. Parmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simakova, I.L., Parmon, V.N. (2017). Catalytic Aspects in the Synthesis of a Promising Energetic Material. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics