Skip to main content

Mapping of Aluminum Particle Dispersion in Solid Rocket Fuel Formulations

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Abstract

Composite specimens consisting of two different kinds of hydroxyl-terminated polybutadiene (HTPB) loaded with either micron- or nanometer-sized Al powders were synthesized. The spatial distribution of the particles was investigated with a combination of Raman spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The tested specimens were prepared by different manufacturing procedures to inhibit particle clustering. Although the dispersion of nano-sized Al particles was the primary interest, micron-sized Al was also used as a reference. Some specimens were prepared by ultrasonic-assisted mixing, others by a simple mechanical mixing procedure, and further specimens by a mechanical mixing process with the addition of dispersing agents (used commercially in pigment and coating applications to reduce inter-particulate attraction forces between particles). Spatial mapping of the C=O Raman mode associated with the HTPB was used to quantify the dispersion of the micron-sized Al particles. Tapping mode AFM and SEM measurements were used to identify the dispersion of both the micron- and nano-sized Al particles. The presence of clusters composed of many nano-sized particles was also identified and their size measured. The results obtained show the potential of these characterization techniques in evaluating the effectiveness of the manufacturing processes of the tested solid fuels and of the examined dispersion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ALEX:

Aluminum exploded

CAl :

Active Al content

DOA:

Dioctyl adipate

HTPB:

Hydroxyl-terminated polybutadiene

HTPB-45M:

MACH I® propulsion grade™ HTPB

HTPB-R45HTLO:

Commercial Poly bd® HTPB

IPDI:

Isophorone diisocyanate

nAl:

Nano-sized Al particle

SEM:

Scanning electron microscopy

Ssp :

Specific surface m2/g

TEM:

Transmission electron microcopy

μAl:

Micron-sized Al particle

References

  1. DeLuca LT, Maggi F, Dossi S, Fassina M, Paravan C, Sossi A (2016) Prospects of aluminum modifications as energetic fuels in chemical rocket propulsion. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer, Cham

    Google Scholar 

  2. DeLuca LT, Galfetti L, Maggi F, Colombo G, Paravan C, Reina, A, Dossi, S, Fassina, M, Sossi A (2014) Chapter 12: Characterization and combustion of aluminum nanopowders in energetic systems. In: Gromov AA, Teipel U (eds) Metal nanopowders: production, characterization, and energetic applications, Wiley, Weinheim, Germany, pp 301–400

    Google Scholar 

  3. Meda L, Marra G, Galfetti L, Severini F, DeLuca LT (2007) Nano-aluminum as energetic material for rocket propellants. Mater Sci Eng C 27(5):1393–1396

    Article  Google Scholar 

  4. Liu H, Ye H (2008) Synthesis and property of poly (trimethylolpropane triacrylate)/Al nanocomposite particle by in situ solution polymerization. Appl Surf Sci 254(15):4432–4438

    Article  Google Scholar 

  5. Sippel TR (2009) Characterization of nanoscale aluminum and ice solid propellants, Doctoral dissertation, Purdue University

    Google Scholar 

  6. Sippel TR, Son SF, Groven LJ (2014) Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame 161(1):311–321

    Article  Google Scholar 

  7. Babuk VA, Dolotkazin I, Gamsov A, Glebov A, DeLuca LT, Galfetti L (2009) Nanoaluminum as a solid propellant fuel. J Propuls Power 25(2):482–489. doi:10.2514/1.36841

    Article  Google Scholar 

  8. Sippel TR, Son SF, Groven LJ, Zhang S, Dreizin EL (2015) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame 162(3):846–854

    Google Scholar 

  9. Galfetti L, DeLuca LT, Severini F, Colombo G, Meda L, Marra G (2007) Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp Sci Technol 11(1):26–32

    Article  Google Scholar 

  10. DeLuca LT, Galfetti L, Colombo G, Maggi F, Bandera A, Babuk VA, Sinditskii VP (2010) Microstructure effects in aluminized solid rocket propellants. J Propuls Power 26(4):724–732

    Article  Google Scholar 

  11. Risha GA, Evans BJ, Boyer E, Kuo KK (2007) Metals, energetic additives and special binders used in solid fuels for hybrid rockets. In: Chiaverini MJ, Kuo KK (eds) Fundamentals of hybrid rocket combustion and propulsion, AIAA Progress in Aeronautics and Astronautics, vol. 218, American Institute of Aeronautic & Astronautics, Reston, VA, pp 413–456

    Google Scholar 

  12. Paravan C (2012) Ballistics of innovative solid fuel formulations for hybrid rocket propulsion, Doctoral dissertation, Science and Technology Dept., Politecnico di Milano

    Google Scholar 

  13. Dokhan A, Price EW, Sigman RK, Seitzman JM (2001) The effects of Al particle size on the burning rate and residual oxide in aluminized propellants, AIAA Paper 2001-3581, doi:10.2514/6.2001-3581

  14. Fanton L, Paravan C, DeLuca LT (2012) Testing and modeling fuel regression rate in a miniature hybrid burner. Int J Aerosp Eng 2012:673838, doi:10.1155/2012/673838

  15. Sossi A, Duranti E, Manzoni M, Paravan C, DeLuca LT, Vorozhtsov AB, Lerner MI, Rodkevich NG, Gromov AA, Savin N (2013) Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust Sci Technol 185(1):17–36. doi:10.1080/00102202.2012.707261

    Article  Google Scholar 

  16. Fedorov SG, Guseinov SL, Storozhenko PA (2010) Nanodispersed metal powders in high-energy condensed systems. Nanotechnol Russ 5(9–10):565–582

    Google Scholar 

  17. Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Pautova YI, Lerner MI, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowders coated by hydrocarbons and fluorohydrocarbons. Appl Surf Sci 271:337–343

    Article  Google Scholar 

  18. Gromov AA, Il’in AP, Föerter -Barth U, Teipel U (2006) Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combust Explos Shock Waves 42(2):177–184. doi:10.1007/s10573-006-0036-4

  19. Mary B, Dubois C, Carreau PJ, Brousseau P (2006) Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheol Acta 45(5):561–573

    Article  Google Scholar 

  20. Paravan C, Reina A, Frosi A, DeLuca LT (2013) Nanosized aluminum for regression rate enhancement. Proceedings of the Fifth European Conference for Aerospace Sciences (EUCASS), Munich, Germany, 01–05 Jul 13, Torus Press, Moscow, Russia. ISBN: 9788494153105

    Google Scholar 

  21. Mench MM, Kuo KK, Yeh CL, Lu YC (1998) Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combust Sci Technol 135(1–6):269–292. doi:10.1080/00102209808924161

  22. Napper DH (1977) Steric stabilization. J Colloid Interface Sci 58(2):390–407

    Article  Google Scholar 

  23. Payne AR (1965) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 9(6):2273–2284

    Article  Google Scholar 

  24. Reina A (2013) Nano-metal fuels for hybrid and solid Propulsion, Doctoral dissertation, Science and Technology Dept., Politecnico di Milano

    Google Scholar 

  25. Wang Q, Xia H, Zhang C (2001) Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. J Appl Polym Sci 80(9):1478–1488

    Article  Google Scholar 

  26. Stuyven B, Chen Q, Van de Moortel W, Lipkens H, Caerts B, Aerts A, Giebeler L, Van Eerdenbrugh B, Augustijns P, Van den Mooter G, Van Humbeeck J, Vanacken J, Moshchalkov VV, Vermant J, Martens JA (2008) Magnetic field assisted nanoparticle dispersion. Chem Commun 1:47–49. doi:10.1039/B816171B

  27. Hunter RJ (1987) Foundations of colloidal science, vol 1. Oxford University Press, Oxford, pp 588–589, 129

    Google Scholar 

  28. Lee EC, Mielewski DF (2005) Method for producing a well-exfoliated and dispersed polymer silicate nanocomposite by ultrasonication, US Patent US 2005/0122834 A1

    Google Scholar 

  29. Risha GA, Evans BJ, Boyer E, Wehrman RB, Kuo KK (2003) Nano-sized aluminum- and boron-based solid-fuel characterization in a hybrid rocket engine, AIAA Paper 2003-4593

    Google Scholar 

  30. Gedanken A (2007) Doping nanoparticles into polymers and ceramics using ultrasound radiation. Ultrason Sonochem 14(4):418–430

    Article  Google Scholar 

  31. Russell B, Chartoff R (2005) The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer 46(3):785–798

    Article  Google Scholar 

  32. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63(14):2055–2067

    Article  Google Scholar 

  33. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  Google Scholar 

  34. Advanced Powder Technology LLC (2015) http://www.nanosized-powders.com. Accessed 31 Mar 2015

  35. Tamayo J, Garcia R (1996) Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12(18):4430–4435

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Gianluigi Marra and ENI – Istituto Donegani (Novara, Italy) for the high-quality SEM and TEM images of the as-prepared nAl powders (ALEX100 and L-ALEX) prior to dispersion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Lucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zare, A. et al. (2017). Mapping of Aluminum Particle Dispersion in Solid Rocket Fuel Formulations. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics