Skip to main content

Laser Ignition of Different Aluminum Nanopowders for Solid Rocket Propulsion

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

Aluminum nanopowders (nAl) coated with oleic acid (nAl@OA), perfluorotetradecanoic acid (nAl@PA) and nickel acetylacetonate (nAl@NA) were prepared. The ignition and combustion characteristics of different aluminum nanopowders were studied using the laser ignition system. And the combustion characteristics of hydroxyl-terminated polybutadiene (HTPB)-based composite solid propellants containing different coated aluminum nanopowders were also investigated. The results show that there is a critical power of laser heat flux density in the ignition process of the coated aluminum nanopowders. The ignition delay time of nAl@NA is shorter than that of nAl@PA and nAl@OA, because of the combustion catalysis of nickel acetylacetonate. The burning rate of the propellant sample containing nAl@NA is the highest among all the formulations at different pressure ranges, and the maximum burning rate is up to 26.13 mm·s−1 at 15 MPa. The burning rates of propellant samples containing nAl@OA and nAl@PA are almost the same at different pressures and higher than that of the propellant samples containing untreated aluminum nanopowders only at the pressure range of 10–15 MPa. The flame intensity of different propellants at different pressure is not the same. Moreover, the surface coated aluminum nanopowder has a little effect on the combustion flame temperature of solid propellant. The burning surface temperature of propellant increases with an increase in pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brousseau P, Anderson CJ (2002) Nanometric aluminum in explosives. Propellants Explos Pyrotechnics 27(5):300–306

    Article  Google Scholar 

  2. Gromov A, Strokova Y, Kabardin A, Vorozhtsov A, Teipel U (2009) Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN. Propellants Explos Pyrotechnics 34(6):506–512

    Google Scholar 

  3. Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ivanov D, Meerov D, Fomenkov I (2009) Combustion of energetic systems based on HMX and aluminum: influence of particle size and mixing technology. Cent Eur J Energy Mater 6(2):195–210

    Google Scholar 

  4. Armstrong RW, Baschung B, Booth DW, Samirant M (2003) Enhanced propellant combustion with nanoparticles. Nano Lett 3(2):253–255

    Article  Google Scholar 

  5. Ivanov YF, Osmonoliev MN, Sedoi VS, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Korotkikh AG, Kuznetsov VT (2003) Productions of ultra-fine powders and their use in high energetic compositions. Propellants Explos Pyrotechnics 28(6):319–333

    Article  Google Scholar 

  6. Baschung B, Grune D, Licht HH, Samirant M (2002) Combustion phenomena of a solid propellant based on aluminium powder. Int J Energy Mater Chem Propuls 5(1–6):219–225

    Google Scholar 

  7. Babuk VA, Dolotkazin I, Gamsov A, Glebov A, DeLuca LT, Galfetti L (2009) Nanoaluminum as a solid propellant fuel. J Propuls Power 25(2):482–489

    Article  Google Scholar 

  8. Pantoya ML, Granier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotechnics 30(1):53–62

    Article  Google Scholar 

  9. Sullivan K, Young G, Zachariah MR (2009) Enhanced reactivity of nano-B/Al/CuO MIC’s. Combust Flame 156(2):302–309

    Article  Google Scholar 

  10. Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah MR (2010) Diffusive vs explosive reaction at the nanoscale. J Phys Chem C 114(20):9191–9195

    Article  Google Scholar 

  11. Pivkina A, Ulyanova P, Frolov Y, Zavyalov S, Schoonman J (2004) Nanomaterials for heterogeneous combustion. Propellants Explos Pyrotechnics 29(1):39–48

    Article  Google Scholar 

  12. Tepper F, Ivanov GV (1997) ‘Activated’ aluminum as a stored energy source for propellants. Int J Energy Mater Chem Propuls 4(1–6):636–645

    Google Scholar 

  13. Aumann CE, Skofronick GL, Martin JA (1995) Oxidation behavior of aluminum nanopowders. J Vac Sci Technol B 13(3):1178–1183

    Article  Google Scholar 

  14. Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140(4):310–318

    Article  Google Scholar 

  15. Sun J, Pantoya ML, Simon SL (2006) Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochem Acta 444(2):117–127

    Article  Google Scholar 

  16. Morgan AB, Wolf JD, Guliants EA, Fernando KAS, Lewis WK (2009) Heat release measurements on micron and nano-scale aluminum powders. Thermochem Acta 488(1–2):1–9

    Article  Google Scholar 

  17. Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17(11):2987–2996

    Article  Google Scholar 

  18. Brousseau P, Côté S, Ouellet N, Lessard P (2000) Preliminary testing of energetic materials containing aluminum nano-powders. In: 25th TTCP WPN/TP-4 meeting, energetic materials and propulsion technology technical workshop, Salisbury, South Australia, 6–7 April, 2000.

    Google Scholar 

  19. Jones DEG, Brousseau P, Fouchard RC, Turcotte AM, Kwok QSM (2000) Thermal characterization of passivated nanometer size aluminium powders. J Therm Anal Calorim 61(3):805–818

    Article  Google Scholar 

  20. Yao E-G, Zhao F-Q, Gao H-X, Xu S-Y, Hu R-Z, Hao H-X, An T, Pei Q, Xiao L-B (2012) Thermal behavior and non-isothermal decomposition reaction kinetics of aluminum nanopowders coated with an oleic acid/hexogen composite system. Acta Phys-Chim Sin 28(4):781–786

    Google Scholar 

  21. Mattew C, Fred T, Vladimir L (2001) Ageing Characteristics of Alex® Nanosize Aluminium. Paper presented at the 37th AIAA/ASME/SAE/ASEE JPC conference & exhibit, Salt Lake City, Utah, 8–11 July, 2001

    Google Scholar 

  22. Kwon Y-S, Gromov AA, Strokova JI (2007) Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci 253(12):5558–5564

    Article  Google Scholar 

  23. Jouet RJ, Granholm RH, Sandusky HW, Warren AD (2006) Preparation and shock reactivity analysis of novel perfluoroalkyl‐coated aluminum nanocomposites. AIP Conf Proc 845(1):1527–1530

    Article  Google Scholar 

  24. Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17(16):4086–4091

    Article  Google Scholar 

  25. Yao E-G, Zhao F-Q, Xu S-Y, Hu R-Z, Xu H-X, H-X H (2014) Combustion characteristics of composite solid propellants containing different coated aluminum nanopowders. Adv Mater Res 92(4):200–211

    Article  Google Scholar 

  26. Yan Q-L, Li X-J, Wang Y, Zhang W-H, Zhao F-Q (2009) Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): the effect of heat and mass transfer to the burning characteristics. Combust Flame 156(3):633–641

    Article  Google Scholar 

  27. Yan Q-L, Song Z-W, Shi X-B, Yang Z-Y, Zhang X-H (2009) Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): the temperature distribution of the flame and its chemical structure. Acta Astronaut 64(5–6):602–614

    Article  Google Scholar 

  28. Chen L, Song W-L, Guo L-G, Xie C-S (2009) Thermal property and microstructure of Al nanopowders produced by two evaporation routes. Trans Nonferrous Met Soc China 19(1):187–191

    Article  Google Scholar 

  29. Ramaswamy AL, Kaste P, Trevino SF (2004) A “Micro-Vision” of the physio-chemical phenomena occurring in nanoparticles of aluminum. J Energy Mater 22(1):1–24

    Article  Google Scholar 

  30. Kassaee MZ, Buazar F (2009) Al nanoparticles: impact of media and current on the Arc fabrication. J Manuf Process 11(1):31–37

    Article  Google Scholar 

  31. Olgun U (2010) Rapid microwave-assisted deposition of microwire patterns of nanoaluminum and nanosilver from colloids. ACS Appl Mater Interfaces 2(1):28–34

    Article  MathSciNet  Google Scholar 

  32. Fernando KAS, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE (2009) Sonochemically assisted thermal decomposition of alane N, N-dimethylethylamine with titanium (Iv) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core−shell nanoparticles. J Phys Chem C 113(2):500–503

    Article  Google Scholar 

  33. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205

    Article  Google Scholar 

  34. Bunker CE, Karnes JJ (2004) Low-temperature stability and high-temperature reactivity of iron-based core−shell nanoparticles. J Am Chem Soc 126(35):10852–10853

    Article  Google Scholar 

  35. Jia Z, Xia Y (2011) Hydrothermal synthesis, characterization, and tribological behavior of oleic acid-capped lanthanum borate with different morphologies. Tribol Lett 41(2):425–434

    Article  Google Scholar 

  36. Lewis WK, Rosenberger AT, Gord JR, Crouse CA, Harruff BA, Fernando KAS, Smith MJ, Phelps DK, Spowart JE, Guliants EA, Bunker CE (2010) Multispectroscopic (FTIR, XPS, and TOFMS−TPD) investigation of the core−shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. J Phys Chem C 114(14):6377–6380

    Article  Google Scholar 

  37. Crowell JE, Chen JG, Yates JT (1986) A vibrational study of the adsorption and decomposition of formic acid and surface formate on Al(111). J Chem Phys 85(5):3111–3122

    Article  Google Scholar 

  38. Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250

    Article  Google Scholar 

  39. Crowell JE, Chen JG, Yates JT Jr (1986) The adsorption and decomposition of carboxylic acids on Al (111). J Electron Spectrosc Relat Phenom 39:97–106

    Article  Google Scholar 

  40. Wu H-X, Xu L-X, Xin C-Y, Yu X-B, Wang Z-M (2005) Synthesis and photoluminescence properties of Tb3+-acetylacetone ternary complexes doped with La3+ or Y3+. Spectrosc Spectr Anal 25(1):69–72

    Google Scholar 

  41. Bu C-H (2009) Preparation and characterization of magnetic nanoparticles comprised of nickel and cobalt. China University of Petroleum, Dongying

    Google Scholar 

  42. Zhao J-Q, Zheng Y, Lu J-G, Han J-P, Ge F-Y (2004) Study on the preparation of sol-gel entrapped Ni(acac)2•2H2O complex and its catalytic properties on epoxidation of cyclohexene by oxygen. J Mol Catal (China) 18(4):266–270

    Google Scholar 

  43. Zhao D, Duan H-C, Jiang H, Gong H (2007) Solid synthesis of nickel acetylacetonate at the room temperature. Chem Ind Times 21(2):8–10

    Google Scholar 

  44. Mu L (2009) Study on preparation and application of chromium acetylacetonate. Southwest University of Science and Technology, Mianyang

    Google Scholar 

  45. Hao H-X, Pei Q, Nan B-J, Zhang H, Xiao L-B, Zhao F-Q (2001) Laser ignition characteristics of RDX-CMDB propellants. Chin J Energy Mater 19(3):276–281

    Google Scholar 

  46. Osborne DT, Pantoya ML (2007) Effect of Al particle size on the thermal degradation of Al/teflon mixtures. Combust Sci Technol 179(8):1467–1480

    Article  Google Scholar 

  47. Yarrington CD, Son SF, Foley TJ (2010) Combustion of silicon/Teflon/viton and aluminum/teflon/viton energetic composites. J Propuls Power 26(4):734–743. doi:10.2514/1.46182

    Article  Google Scholar 

  48. Watson KW, Pantoya ML, Levitas VI (2008) Fast reactions with nano- and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame 155(4):619–634

    Article  Google Scholar 

  49. Kappagantula K, Pantoya ML (2012) Experimentally measured thermal transport properties of aluminum–polytetrafluoroethylene nanocomposites with graphene and carbon nanotube additives. Int J Heat Mass Transfer 55(4):817–824

    Article  Google Scholar 

  50. Kubota N (2007) Propellants and explosives: thermochemical aspects of combustion, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  51. Sossi A, Duranti E, Manzoni M, Paravan C, DeLuca LT, Vorozhtsov AB, Lerner MI, Rodkevich NG, Gromov AA, Savin N (2012) Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust Sci Technol 185(1):17–36

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21173163) and Science and Technology Foundation of Combustion and Explosion Laboratory in China (No. 9140C3503141006). The authors wish to express their gratitude to Ms. Ying Wang and Ms. Xueli Chen for their help in combustion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, F., Yao, E., Xu, S., Xu, H., Hao, H. (2017). Laser Ignition of Different Aluminum Nanopowders for Solid Rocket Propulsion. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics