Skip to main content

Combustion Behavior of Aluminum Particles in ADN/GAP Composite Propellants

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Abstract

Propellants containing ADN/GAP are regarded as a promising green alternative to AP/HTPB solid rocket propellants because of avoiding chloric acid emission. The addition of aluminum powder is a classical approach to increase the theoretical specific impulse of composite propellants. The optimum aluminum content is in the range of 16–18 % Al. But propellant formulations with ADN, a chlorine-free oxidizer, and GAP, an energetic binder, generate no chloric acid but more nitrogen on combustion achieving similar performance. Significantly different thermal and chemical conditions occur to the aluminum particles close to the burning surface. This study investigates the combustion behavior of aluminum particles in an ADN/GAP matrix in comparison to AP/HTPB at various pressures up to 15 MPa. The agglomeration of Al particles at the surface and burning behavior of aluminized AP/HTPB propellants has already been investigated and is extended to the ADN/GAP propellants. The temperature measurements close to the propellant surface indicate higher values near the Al boiling point that accelerates the melting of Al particles and influences the agglomeration process. At higher pressure the temperatures are in the magnitude of Al2O3 evaporation and decomposition close to 3000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsson A, Wingborg N (2011) Green propellants based on ammonium dinitramide (ADN). In: Jason Hall (ed) Advances in spacecraft technologies. InTech, Rijeka, Croatia

    Google Scholar 

  2. Menke K, Heintz T, Schweikert W, Keicher T, Krause H (2009) Formulation and properties of ADN/GAP propellants. Propellants Explos Pyrotechnics 34:218–230

    Article  Google Scholar 

  3. Weiser V, Eisenreich N, Baier A, Eckl W (1999) Burning behaviour of ADN formulations. Propellants Explos Pyrotechnics 24:163–167

    Article  Google Scholar 

  4. Heintz T, Pontius H, Aniol J, Birke C, Leisinger K, Reinhard W (2009) Ammonium dinitramide (ADN) – prilling, coating, and characterization. Propellants Explos Pyrotechnics 34:231–238

    Article  Google Scholar 

  5. Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer (GAP) with bis-propargyl-succinate (II). Propellants Explos Pyrotechnics 34:210–217

    Article  Google Scholar 

  6. Volk F, Bathelt H (1998) User’s manual for the ICT-thermodynamic code, vol 1, Bericht 14/88. Fraunhofer-ICT, Pfinztal

    Google Scholar 

  7. Weiser V, Franzin A, Gettwert V, DeLuca LT (2013) Combustion of metallised ADN/GAP solid rocket propellants with focus on agglomeration effects. In: 5 EuCASS-Propulsion Physics, Munich, 01–05 July 2013

    Google Scholar 

  8. Weiser V, Ebeling H, Weindel M, Eckl W, Klahn T (2004) Non-intrusive burning rate measurement under pressure by evaluation of video data. In: 35th international annual conference of ICT, 29 Jun–2 Jul 2004, Karlsruhe, pp 158-(1-6)

    Google Scholar 

  9. DeLuca LT, Galfetti L, Maggi F, Colombo G, Reina A, Dossi S, Consonni D, Brambilla M (2012) Inovative metallized formulation for solid or hybrid rocket propulsion. Chin J Energetic Mater 20(4):465–474

    Google Scholar 

  10. Weiser V, Eisenreich N (2005) Fast emission spectroscopy for a better understanding of pyrotechnic combustion behaviour. Propellants Explos Pyrotechnics 30:67

    Article  Google Scholar 

  11. Lynch P, Krier H, Glumac N (2010) Emissivity of aluminum-oxide particle clouds: application to pyrometry of explosive fireballs. J Thermophys Heat Transf 24(2):301–308

    Article  Google Scholar 

  12. Beckstead MW (2004) A summary of aluminum combustion; NATO Report RTO-EN-023; NATO Research & Technology Organization: Neuilly-sur-Seine, France

    Google Scholar 

  13. Babuk VA, Vasilyev VA, Malakhov MS (1999) Condensed combustion products at the burning surface of aluminized solid propellant. J Propuls Power 15(6):783–793

    Article  Google Scholar 

  14. DeLuca LT, Marchesi E, Spreafico M, Reina A, Maggi F, Rossettini L, Bandera A, Colombo G, Kosowski BM (2010) Aggregation versus agglomeration in metallized solid propellants. JEnergetic Mater Chem Propuls 9(1):91–105

    Google Scholar 

  15. Sambamurthi JK, Price EW, Sigman RK (1983) Aluminium agglomeration in solid-propellant combustion. AIAA J 22(8):1132–1138

    Article  Google Scholar 

  16. DeLuca LT (2007) Burning of aluminazed solid rocket propellants: from micrometric to nanometric fuel size, vol VI, Theory and practice of energetic materials. IASPEP, Xi’an

    Google Scholar 

  17. Cohen NS (1983) A pocket model for aluminium agglomeration in composite propellants. AIAA J 21(5):720–725

    Article  Google Scholar 

  18. Babuk VA, Dolotkazin IN, Glebov AA (2005) Burning mechanism of aluminized solid rocket propellants based on energetic binders. Propellant Explos Pyrotechnics 30(4):281–290

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 262099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Weiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weiser, V. et al. (2017). Combustion Behavior of Aluminum Particles in ADN/GAP Composite Propellants. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics