Using Graph Metrics for Linked Open Data Enabled Recommender Systems
- 1 Citations
- 1k Downloads
Abstract
Linked Open Data has been recognized as a useful source of background knowledge for building content-based recommender systems. While many existing approaches transform that data into a propositional form, we investigate how the graph nature of Linked Open Data can be exploited when building recommender systems. In particular, we use path lengths, the K-Step Markov approach, as well as weighted NI paths to compute item relevance and perform a content-based recommendation. An evaluation on the three tasks of the 2015 LOD-RecSys challenge shows that the results are promising, and, for cross-domain recommendations, outperform collaborative filtering.
Keywords
Linked Open Data Recommender systems Graph metrics Cross-domain recommendationNotes
Acknowledgements
The work presented in this paper has been partly funded by the German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD). Part of this work was performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC. We would like to thank our colleague Robert Meusel for his valuable contribution to our system.
References
- 1.Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adapted Interact. 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
- 2.Cantador, I., Fernández-Tobıas, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender systems (2015)Google Scholar
- 3.Allan, M.: Collins and Elizabeth F Loftus. A spreading-activation theory of semantic processing. Psychol. Rev. 82(6), 407 (1975)CrossRefGoogle Scholar
- 4.de Borda, J.C.: Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences (1781)Google Scholar
- 5.Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in model-based recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 253–256. ACM, New York, NY, USA (2012)Google Scholar
- 6.Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 2012, pp. 1–8. ACM, New York, NY, USA (2012)Google Scholar
- 7.Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: A generic semantic-based framework for cross-domain recommendation. In: Proceedings of the 2Nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2011, pp. 25–32. ACM, New York, NY, USA (2011)Google Scholar
- 8.Heitmann, B., Dabrowski, M., Passant, A., Hayes, C., Griffin, K.: Personalisation of social web services in the enterprise using spreading activation for multi-source, cross-domain recommendations. In: AAAI Spring Symposium: Intelligent Web Services Meet Social Computing (2012)Google Scholar
- 9.Heitmann, B., Conor Hayes, C.: Using linked data to build open, collaborative recommender systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence (2010)Google Scholar
- 10.Heitmann, B., Hayes, C.: SemStim at the LOD-RecSys 2014 challenge. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 170–175. Springer, Heidelberg (2014) Google Scholar
- 11.Kaminskas, M., Fernández-Tobıas, I., Ricci, F., Cantador, I.: Knowledge-based identification of music suited for places of interest. Inf. Technol. Tourism 14(1), 73–95 (2014)CrossRefGoogle Scholar
- 12.Kaminskas, M., Fernández-Tobías, I., Cantador, I., Ricci, F.: Ontology-based identification of music for places. In: Cantoni, L., (Phil) Xiang, Z. (eds.), Information and Communication Technologies in Tourism 2013, pp. 436–447. Springer, Heidelberg (2013)Google Scholar
- 13.Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Seman. Web J. (2013)Google Scholar
- 14.Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: A linked data recommender system using a neighborhood-based graph kernel. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 89–100. Springer, Heidelberg (2014) Google Scholar
- 15.Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: Top-n recommendations from implicit feedback leveraging linked open data. In: IIR, pp. 20–27 (2014)Google Scholar
- 16.Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999–66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120Google Scholar
- 17.Passant, A.: dbrec — Music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010) CrossRefGoogle Scholar
- 18.Paulheim, H., Fürnkranz, J.: Unsupervised generation of data mining features from linked open data. In: International Conference on Web Intelligence, Mining, and Semantics (WIMS 2012) (2012)Google Scholar
- 19.Paulheim, H., Ristoski, P., Mitichkin, E., Bizer, C.: Data mining with background knowledge from the web. In: RapidMiner World (2014)Google Scholar
- 20.Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked data with rapidminer. J. Web Seman. (2015). To appearGoogle Scholar
- 21.Ristoski, P., Loza Mencía, E., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014) Google Scholar
- 22.Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. In: Linked Data for Knowledge Discovery (2014)Google Scholar
- 23.Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) Google Scholar
- 24.Schmachtenberg, M., Strufe, T., Paulheim, H.: Enhancing a location-based recommendation system by enrichment with structured data from the web. In: Web Intelligence, Mining and Semantics (2014)Google Scholar
- 25.Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, pp. 543–552. ACM, New York, NY, USA (2014)Google Scholar
- 26.Andreas Thalhammer. Dbpedia pagerank dataset. Downloaded from (2014). http://people.aifb.kit.edu/ath/#DBpedia_PageRank
- 27.Ting, K.M., Witten, I.H.: Issues in stacked generalization. Artif. Intell. Res. 10(1), 271–289 (1999)zbMATHGoogle Scholar
- 28.White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 266–275. ACM, New York, NY, USA (2003)Google Scholar