Skip to main content

Micro-neuroanatomy of the Vagus, Superior Laryngeal, and Recurrent Laryngeal Nerves

  • Chapter
  • First Online:
The Recurrent and Superior Laryngeal Nerves

Abstract

The micro-neuroanatomy of the vagus nerve (VN), superior laryngeal nerve (SLN), recurrent laryngeal nerve (RLN), and their respective central connections are complex. While there has been some clarity amongst animal and human studies, there is considerable debate regarding central contributions and topography, as well as peripheral fiber types, topographical organization, and function. This chapter will discuss the micro-neuroanatomy of the central connections, neural ganglia, and each nerve separately. Meanwhile, because the micro-neuroanatomy provides information regarding the form underlying the function of the larynx, further consideration of laryngeal dysfunction is addressed through additional sections covering age-related changes, neural injury, and neural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida Y, Miyazaki T, Hirano M, et al. Arrangement of motoneurons innervating the intrinsic laryngeal muscles of cats as demonstrated by horseradish peroxidase. Acta Otolaryngol. 1982;94:329–34.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida Y, Yatake K, Tanaka Y, et al. Morphological observation of laryngeal motoneurons by means of cholera toxin B subunit tracing technique. Acta Otolaryngol. 1998;539:98–105.

    Article  CAS  Google Scholar 

  4. Fix JD. Cranial nerves. In: Fix JD, editor. Neuroanatomy. 3rd ed. Philadelphia, PA: Lippincott, Williams, & Wilkens; 2002.

    Google Scholar 

  5. Yoshida Y, Saito T, Tanaka Y, et al. The Postganglionic sympathetic innervation of the larynx in cats. In: Gauffin J, Hammerberg B, editors. Vocal Physiology, Acoustic, perceptual, and physiological aspects of voice mechanisms. Singular Publishing Inc: San Diego; 1991. p. 189–96.

    Google Scholar 

  6. Mesulam M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry, a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferent. J Histochem Cytochem. 1978;26:106–17.

    Article  CAS  PubMed  Google Scholar 

  7. Myssiorek D. Reucrrent laryngeal nerve paralysis: anatomy and etiology. Otolaryngol Clin Noth Am. 2004;37:25–44.

    Article  Google Scholar 

  8. Gacek RR, Malmgren LT, Lyon MJ. Location of adductor and abductor motor fibers to the larynx. Ann Otol Rhinol Laryngol. 1977;86:770–6.

    Article  Google Scholar 

  9. Mei N, Condamin M, Boyer A. The composition of the vagus nerve of the cat. Cell Tissue Res. 1980;209:423–31.

    Article  CAS  PubMed  Google Scholar 

  10. Evans DHL, Murray JG. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat. 1954;88:320–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogura JH, Lam RL. Anatomical and physiological correlations on stimulating the human superior laryngeal nerve. Laryngoscope. 1953;63:947–59.

    Article  CAS  PubMed  Google Scholar 

  12. Kierner AC, Aigner M, Burium M. The external branch of the superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1998;124:301–3.

    Article  CAS  PubMed  Google Scholar 

  13. Kambic V, Zargi M, Radsel Z. Topographical anatomy of the external branch of the superior laryngeal nerve. J Laryngol Otol. 1984;98:1121–4.

    Article  CAS  PubMed  Google Scholar 

  14. Stephens RE, Wendel KH, Addington WR. Anatomy of the internal branch of the superior laryngeal nerve. Clin Anat. 1999;12:79–83.

    Article  CAS  PubMed  Google Scholar 

  15. Tiago R, Pontes P, do Brasil OC. Age-related changes in human laryngeal nerves. Otolaryngol Head Neck Surg. 2007;136:747–51.

    Article  PubMed  Google Scholar 

  16. Andrew BL. A functional analysis of the myelinated fibres of the superior laryngeal nerve of the rat. J Physiol. 1956;153:420–32.

    Article  Google Scholar 

  17. Kirchner JA, Wyke BD. Afferent discharges from laryngeal articular mechanoreceptors. Nature. 1965;205:86–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sant’Ambrogio G, Mathew OP, Fisher JT, Sant’Ambrogio FB. Laryngeal receptors responding to transmural pressure, airflow, and local muscle activity. Respir Physiol. 1983;54:317–30.

    Article  PubMed  Google Scholar 

  19. Shin T, Wada S, Maeyama T, et al. Substance P immunoreactive sensory nerve fibers of the canine laryngeal mucosa. In: Fumimora O, editor. Vocal physiology: voice production mechanisms and functions. New York: Raven Press Ltd; 1988. p. 115–27.

    Google Scholar 

  20. Hamamoto T, Takumida M, Hirakawa K, Takeno S, Tatsukawa T. Localization of transient receptor potential channel vanilloid subfamilies in the mouse larynx. Acta Otolaryngol. 2008;128:685–93.

    Article  CAS  PubMed  Google Scholar 

  21. Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9:243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nadel J, Widdcombe J. Reflex effects of upper airway irritation on total lung resistance and blood pressure. J Appl Physiol. 1962;17:861–5.

    CAS  PubMed  Google Scholar 

  23. Zhang G, et al. Altered expression of trpv1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol. 2008;23:5771–86.

    Article  Google Scholar 

  24. Björck G, Margolin G, Måbäck GM, et al. New animal model for assessment of functional laryngeal motor innervation. Ann Otol Rhinol Laryngol. 2012;121(10):695–9.

    Article  PubMed  Google Scholar 

  25. Wu B, Sanders I, Mu L, et al. The human communicating nerve. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.

    Article  CAS  PubMed  Google Scholar 

  26. Shin T, Rabuzzi D. Conduction studies of the canine recurrent laryngeal nerve. Laryngoscope. 1971;81:586–96.

    Article  CAS  PubMed  Google Scholar 

  27. Tomasch J, Britton WA. A fiber-analysis of the recurrent laryngeal nerve supply in man. Acta Anat. 1955;23:386–98.

    Article  CAS  PubMed  Google Scholar 

  28. Jotz GP, de Campos D, Rodrigues MF, et al. Histological asymmetry of the human recurrent laryngeal nerve. J Voice. 2005;25:8–14.

    Article  Google Scholar 

  29. Harrison DFN. Fiber size frequency in the recurrent laryngeal nerves of man and giraffe. Acta Otolaryngol. 1981;91:383–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dahlqvist A, Carlsoo B, Hellstrom S. Fiber components of the recurrent laryngeal nerve of the rat: a study by light and electron microscopy. Anat Rec. 1982;204:365–70.

    Article  CAS  PubMed  Google Scholar 

  31. De Campos D, Ellwanger JH, do Nascimento PS, et al. Sexual dimorphism in the human vocal fold innervation. J Voice. 2013;27:267–72.

    Article  PubMed  Google Scholar 

  32. Sunderland S, Swaney WE. The intraneural topography of the recurrent laryngeal nerve in man. Anat Rec. 1952;114:411–26.

    Article  CAS  PubMed  Google Scholar 

  33. Dubois FS, Foley JO. Experimental studies on the vagus and spinal accessory nerves in the cat. Anat Rec. 1936;64:285–307.

    Article  Google Scholar 

  34. Brocklehurst RJ, Edgeworth FH. The fibers components of the laryngeal nerves of the Macaca mulatta. J Anat. 1940;74:386–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Malmgren LT, Gacek RR. Acetylcholinesterase staining of the fiber components in feline and human recurrent laryngeal nerve. Topography of laryngeal motor fiber regions. Acta Otolaryngol. 1981;91:337–52.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberg SI, Malmgren LT, Woo P. Age-related changes in the internal branch of the rat superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1989;115:78–86.

    Article  CAS  PubMed  Google Scholar 

  37. Mortelliti AJ, Malmgren LT, Gacek RR. Ultrastructural changes with age in the human superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1990;116:1062–9.

    Article  CAS  PubMed  Google Scholar 

  38. Malmgren LT, Ringwood MA. Aging of the recurrent laryngeal nerve: an ultrastuctural morphometric study. In: Fumimora O, editor. Vocal physiology: voice production mechanisms and functions. New York: Raven Press Ltd; 1988. p. 159–80.

    Google Scholar 

  39. Nakai T, Gogo N, Moriyama H, et al. The human recurrent laryngeal nerve during the aging process. Okajimas Folia Anat Jpn. 2000;76:363–8.

    Article  CAS  PubMed  Google Scholar 

  40. Mueller PB, Sweeney RJ, Baribeau LJ. Acoustic and morphologic study of senescent voice. Ear Nose Throat J. 1984;63:292–5.

    CAS  PubMed  Google Scholar 

  41. Kirchner JA. Laryngeal afferent systems in phonatory control. Proc Conf Access Vocal Pathol. 1981;11:31.

    Google Scholar 

  42. Paniello RC, Edgar JC, Kallogjeri D, et al. Medialization versus reinnervation for unilateral vocal fold paralysis: a multicenter randomized clinical trial. Laryngoscope. 2011;121:2172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Seddon HJ. Three types of nerve injury. Brain. 1943;66(4):237–88.

    Article  Google Scholar 

  44. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74:491–516.

    Article  CAS  PubMed  Google Scholar 

  45. George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995;15:6445–52.

    CAS  PubMed  Google Scholar 

  46. Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987;165:1218–23.

    Article  CAS  PubMed  Google Scholar 

  47. Tang S, Shen YJ, DeBellard ME. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol. 1997;38:1355–66.

    Article  Google Scholar 

  48. Love FM, Son YJ, Thompson WJ. Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol. 2003;54(4):566–76.

    Article  PubMed  Google Scholar 

  49. Kingham PJ, Terenghi G. Bioengineered nerve regeneration and muscle reinnervation. J Anat. 2006;209(4):511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nomoto M, Yoshihara T, Kanda T, Kaneko T. Synapse formation by autonomic nerves in the previously denervated neuromuscular junctions of the feline intrinsic laryngeal muscles. Brain Res. 1991;539(2):276–86.

    Article  CAS  PubMed  Google Scholar 

  51. Nomoto M, Yoshihara T, Kanda T, Konno A, Kaneko T. Misdirected reinnervation in the feline intrinsic laryngeal muscles after long-term denervation. Acta Otolaryngol Suppl. 1993;506:71–4.

    Article  CAS  PubMed  Google Scholar 

  52. Hydman J, Mattsson P. Collateral reinnervation by the superior laryngeal nerve after recurrent laryngeal nerve injury. Muscle Nerve. 2008;38(4):1280–9.

    Article  PubMed  Google Scholar 

  53. Halum SL, Macrae B, Bijangi-Vishehsaraei K, et al. Neurotrophic factor-secreting autologous muscle stem cell therapy for the treatment of laryngeal denervation injury. Laryngoscope. 2012;122:2482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah P. Parker M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parker, N.P., Patel, R., Halum, S.L. (2016). Micro-neuroanatomy of the Vagus, Superior Laryngeal, and Recurrent Laryngeal Nerves. In: Randolph, G. (eds) The Recurrent and Superior Laryngeal Nerves. Springer, Cham. https://doi.org/10.1007/978-3-319-27727-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27727-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27725-7

  • Online ISBN: 978-3-319-27727-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics