Skip to main content

Vocal Learning and Auditory-Vocal Feedback

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are defined here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or five mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: are ultrasounds learned or innate? Brain and Language, 124, 96–116.

    Article  PubMed  Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds and men: the mouse ultrasonic sound system has some features similar to humans and song-learning birds. PLoS ONE, 7(10), 1–15.

    Google Scholar 

  • Au, W. W. L., Pawloski, J. L., Nachtigall, P. E., Blonz, M., & Gisner, R. C. (1995). Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). The Journal of the Acoustical Society of America, 98(1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Baptista, L. F., & Morton, M. L. (1981). Interspecific song acquisition by a white-crowned sparrow. The Auk, 98(2), 383–385.

    Google Scholar 

  • Baptista, L. F., & Schuchmann, K.-L. (1990). Song learning in the Anna hummingbird (Calypte anna). Ethology, 84, 15–26.

    Article  Google Scholar 

  • Baylis, J. (1982). Avian vocal mimicry: Its function and evolution. In D. E. Kroodsma & E. H. Miller (Eds.), Acoustic communication in birds (pp. 51–83). New York: Academic.

    Google Scholar 

  • Beecher, M. D., & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology & Evolution, 20(3), 143–149.

    Article  Google Scholar 

  • Boughman, J. W. (1998). Vocal learning by greater spear-nosed bats. Proceedings of the Royal Society B: Biological Sciences, 265, 227–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenowitz, E. A., & Kroodsma, D. E. (1996). The neuroethology of birdsong. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and evolution of acoustic communication in birds (pp. 269–281). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., & Croft, D. P. (2015). Ecological knowledge, leadership, and the evolution of menopause in killer whales. Current Biology, 25, 1–5.

    Article  CAS  Google Scholar 

  • Briefer, E. F., & McElligott, A. G. (2012). Social effects on vocal ontogeny in an ungulate, the goat, Capra hircus. Animal Behaviour, 83(4), 991–1000.

    Article  Google Scholar 

  • Brumm, H., Schmidt, R., & Schrader, L. (2009). Noise-dependent vocal plasticity in domestic fowl. Animal Behaviour, 78(3), 741–746.

    Article  Google Scholar 

  • Brumm, H., & Slater, P. J. B. (2006a). Animals can vary signal amplitude with receiver distance: evidence from zebra finch song. Animal Behavior, 71, 699–705.

    Article  Google Scholar 

  • Brumm, H., & Slater, P. J. B. (2006b). Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behavioral Ecology and Sociobiology, 60, 475–481.

    Article  Google Scholar 

  • Brumm, H., Voss, K., Köllmer, I., & Todt, D. (2004). Acoustic communication in noise: Regulation of call characteristics in a New World monkey. Journal of Experimental Biology, 207(3), 443–448.

    Article  PubMed  Google Scholar 

  • Brumm, H., & Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour, 148, 1173–1198.

    Article  Google Scholar 

  • Cade, W. (1975). Acoustically orienting parasitoids: Fly phonotaxis to cricket song. Science, 190, 1312–1313.

    Article  Google Scholar 

  • Cardoso, G. C., & Atwell, J. W. (2011). On the relation between loudness and the increased song frequency of urban birds. Animal Behaviour, 82(4), 831–836.

    Article  Google Scholar 

  • Catchpole, C. K. (1980). Sexual selection and the evolution of complex songs among warblers of the genus Acrocephalus. Behaviour, 74, 149–166.

    Article  Google Scholar 

  • Catchpole, C. K. (1986). Song repertoires and reproductive success in the great reed warbler Acrocephalus arundinaceus. Behavioral Ecology and Sociobiology, 19, 439–445.

    Article  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Charvet, C. J., & Striedter, G. F. (2011). Developmental modes and developmental mechanisms can channel brain evolution. Frontiers in Neuroanatomy, 5, 1–5.

    Article  Google Scholar 

  • Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex. Journal of Morphology, 228, 223–285.

    Article  CAS  PubMed  Google Scholar 

  • Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: A case for vocal learning? Ethology, 110, 221–243.

    Article  Google Scholar 

  • Cunnington, G. M., & Fahrig, L. (2010). Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 36(5), 463–470.

    Article  Google Scholar 

  • Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: W. W. Norton.

    Google Scholar 

  • Delarue, J., Laurinolli, M., & Martin, B. (2009). Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. The Journal of the Acoustical Society of America, 126(6), 3319–3328.

    Article  PubMed  Google Scholar 

  • Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O. (2005). How sleep affects the developmental learning of bird song. Nature, 433(7027), 710–716.

    Article  PubMed  CAS  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    Article  CAS  PubMed  Google Scholar 

  • Egnor, S. E. R., & Hauser, M. D. (2004). A paradox in the evolution of primate vocal learning. Trends in Neurosciences, 27, 649–654.

    Article  CAS  PubMed  Google Scholar 

  • Egnor, S. E. R., & Hauser, M. D. (2006). Noise-induced vocal modulation in cotton-top tamarins (Saguinus oedipus). American Journal of Primatology, 68(12), 1183–1190.

    Article  PubMed  Google Scholar 

  • Eliades, S. J., & Wang, X. (2012). Neural correlates of the Lombard effect in primate auditory cortex. The Journal of Neuroscience, 32(31), 10737–10748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, C. S., & Marler, P. (1992). Female appearance as a factor in the responsiveness of male chickens during anti-predator behaviour and courtship. Animal Behaviour, 43(1), 137–145.

    Article  Google Scholar 

  • Farabaugh, S. M., Linzenbold, A., & Dooling, R. J. (1994). Vocal plasticity in budgerigars (Melopsittacus undulatus): Evidence for social factors in the learning of contact calls. Journal of Comparative Psychology, 108, 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W., & Jarvis, E. (2013). Birdsong and other animal models for human speech, song, and vocal learning. In M. A. Arbib (Ed.), Language, music, and the brain (Strüngmann forum reports, Vol. 10, pp. 499–539). Cambridge, MA: MIT Press.

    Google Scholar 

  • Fripp, D., Owen, C., Quintana-Rizzo, E., Shapiro, A., Buckstaff, K., Jankowski, K., et al. (2004). Bottlenose dolphin calves model their signature whistles on the whistles of community members they rarely hear. Animal Cognition, 8, 17–26.

    Article  PubMed  Google Scholar 

  • Fristrup, K. M., Hatch, L. T., & Clark, C. W. (2003). Variation in humpback whale (Megaptera novaeangliae) song length in relation to low-frequency sound broadcasts. The Journal of the Acoustical Society of America, 113(6), 3411–3424.

    Article  PubMed  Google Scholar 

  • Gans, C. (1973). Sound production in the Salientia: Mechanism and evolution of the emitter. American Zoologist, 13, 1179–1194.

    Article  Google Scholar 

  • Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., et al. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21, 687–691.

    Article  CAS  PubMed  Google Scholar 

  • Giles, H. (1984). The dynamics of speech accommodation. International Journal of the Sociology of Language, 46, 1–155.

    Google Scholar 

  • Greenfield, M. D. (1994). Cooperation and conflict in the evolution of signal interactions. Annual Review of Ecology and Systematics, 25, 97–126.

    Article  Google Scholar 

  • Guinee, L. N., Chu, K., & Dorsey, E. M. (1983). Changes over time in the songs of known individual humpback whales (Megaptera novaeangliae). In R. Payne (Ed.), Communication and behavior of whales (pp. 59–80). Boulder, CO: Westview Press.

    Google Scholar 

  • Hage, S. R., Jürgens, U., & Ehret, G. (2006). Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience, 23, 3297–3308.

    Article  PubMed  Google Scholar 

  • Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78(6), 1301–1307.

    Article  Google Scholar 

  • Hall, M. L., Illes, A., & Vehrencamp, S. L. (2006). Overlapping signals in banded wrens: Long-term effects of prior experience on males and females. Behavioral Ecology, 17(2), 260–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., Strenzke, N., & Fischer, J. (2012). Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience, 13(1), 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardus, M. E., Lameira, A. R., Van Schaik, C. P., & Wich, S. A. (2009). Tool use in wild orang-utans modifies sound production: A functionally deceptive innovation? Proceedings of the Royal Society of London B: Biological Sciences, 276(1673), 3689–3694. doi:10.1098/rspb.2009.1027.

    Article  Google Scholar 

  • Hayes, C. (1951). The ape in our house. New York: Harper and Brothers.

    Google Scholar 

  • Hayes, K. J., & Hayes, C. (1952). Imitation in a home-raised chimpanzee. Journal of Comparative and Physiological Psychology, 45, 450–459.

    Article  CAS  PubMed  Google Scholar 

  • Hiss, A. (1983). Hoover. The New Yorker, 3, 25–27.

    Google Scholar 

  • Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology, 3(12), 2177–2186.

    Article  CAS  Google Scholar 

  • Horner, K., Serviere, J., & Granier-Deferre, C. (1987). Deoxyglucose demonstration of in-utero hearing in the guinea pig foetus. Hearing Research, 26(3), 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Hotchkin, C., & Parks, S. (2013). The Lombard effect and other noise-induced vocal modifications: Insight from mammalian communication systems. Biological Reviews, 88(4), 809–824.

    Article  PubMed  Google Scholar 

  • Janik, V. M. (2000). Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science, 289(5483), 1355–1357.

    Article  CAS  PubMed  Google Scholar 

  • Janik, V. M., & Sayigh, L. S. (2013). Communication in bottlenose dolphins: 50 years of signature whistle research. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 199(6), 479–489.

    Article  PubMed  Google Scholar 

  • Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. Advances in the Study of Behavior, 26, 59–99.

    Article  Google Scholar 

  • Jarvis, E. D. (2006). Selection for and against vocal learning in birds and mammals. Ornithological Science, 5, 5–14.

    Article  Google Scholar 

  • Jarvis, E. D. (2007). Neural systems for vocal learning in birds and humans: A synopsis. Journal of Ornithology, 148, S35–S44.

    Article  Google Scholar 

  • Jones, G., & Ransome, R. D. (1993). Echolocation calls of bats are influenced by maternal effects and changes over a lifetime. Proceedings of the Royal Society B: Biological Sciences, 252, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258.

    Article  Google Scholar 

  • Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice, 23(1), 1–10.

    Article  PubMed  Google Scholar 

  • Kelley, L. A., & Healy, S. D. (2011). Vocal mimicry. Current Biology, 21, R9–R10.

    Article  CAS  PubMed  Google Scholar 

  • Kellogg, W. N., & Kellogg, L. A. (1933). The ape and the child. New York: McGraw-Hill.

    Google Scholar 

  • Kikusui, T., Nakanishi, K., Nakagawa, R., Nagasawa, M., Mogi, K., & Okanoya, K. (2011). Cross fostering experiments suggest that mice songs are innate. PloS ONE, 6(3), 1–10.

    Google Scholar 

  • King, S. L., Sayigh, L. S., Wells, R. S., Fellner, W., & Janik, V. M. (2013). Vocal copying of individually distinctive signature whistles in bottlenose dolphins. Proceedings of the Royal Society of London B: Biological Sciences, 280(1757), 20130053.

    Article  Google Scholar 

  • Klatt, D. H., & Stefanski, R. A. (1974). How does a mynah bird imitate human speech? The Journal of the Acoustical Society of America, 55, 822–832.

    Google Scholar 

  • Konishi, M. (1963). The role of auditory feedback in the vocal behavior of the domestic fowl. Zeitschrift für Tierpsychologie, 20, 349–367.

    Google Scholar 

  • Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie, 22, 770–783.

    CAS  PubMed  Google Scholar 

  • Konishi, M. (2004). The role of auditory feedback in birdsong. Annals of the New York Academy of Sciences, 1016, 463–475.

    Article  PubMed  Google Scholar 

  • Kroodsma, D. E., & Konishi, M. (1991). A suboscine songbird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Animal Behavior, 44, 477–487.

    Article  Google Scholar 

  • Lahdenperä, M., Mar, K. U., & Lummaa, V. (2014). Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans. Frontiers in Zoology, 11(1), 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampe, U., Reinhold, K., & Schmoll, T. (2014). How grasshoppers respond to road noise: Developmental plasticity and population differentiation in acoustic signalling. Functional Ecology, 28(3), 660–668.

    Article  Google Scholar 

  • Lane, H., & Tranel, B. (1971). The Lombard sign and the role of hearing in speech. Journal of Speech and Hearing Research, 14, 677–709.

    Article  Google Scholar 

  • Lengagne, T., Aubin, T., Lauga, J., & Jouventin, P. (1999). How do king penguins (Aptenodytes patagonicus) apply the mathematical theory of information to communicate in windy conditions? Proceedings of the Royal Society of London B: Biological Sciences, 266, 1623–1628.

    Article  Google Scholar 

  • Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Madsen, P. T., Jensen, F. H., Carder, D., & Ridgway, S. (2011). Dolphin whistles: A functional misnomer revealed by heliox breathing. Biology Letters, 8(2), 211–213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen, P. T., & Surlykke, A. (2013). Functional convergence in bat and toothed whale biosonars. Physiology, 28(5), 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Mammen, D. L., & Nowicki, S. (1981). Individual differences and within-flock convergence in chickadee calls. Behavioral Ecology and Sociobiology, 9, 179–186.

    Article  Google Scholar 

  • Marsh, H., & Kasuya, T. (1986). Evidence for reproductive senescence in female cetaceans. Reports of the International Whaling Commission, 8, 57–74.

    Google Scholar 

  • Marshall, A. J., Wrangham, R. W., & Arcadi, A. C. (1999). Does learning affect the structure of vocalizations in chimpanzees? Animal Behavior, 58, 825–830.

    Article  Google Scholar 

  • McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs as repositories of social knowledge in African elephants. Science, 292(5516), 491–494.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W. (1989). A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature, 341(6242), 529–532.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W. (1993). An audio-vocal interface in echolocating horseshoe bats. The Journal of Neuroscience, 13(5), 1899–1915.

    CAS  PubMed  Google Scholar 

  • Metzner, W. (1996). Anatomical basis for audio‐vocal integration in echolocating horseshoe bats. Journal of Comparative Neurology, 368(2), 252–269.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W., & Schuller, G. (2010). Vocal control in echolocating bats. In M. B. Stefan (Ed.), Handbook of behavioral neuroscience (Vol. 19, pp. 403–415). London: Elsevier.

    Google Scholar 

  • Metzner, W., Zhang, S., & Smotherman, M. (2002). Doppler-shift compensation behavior in horseshoe bats revisited: Auditory feedback controls both a decrease and an increase in call frequency. Journal of Experimental Biology, 205, 1607–1616.

    PubMed  Google Scholar 

  • Miksis, J., Tyack, P., & Buck, J. (2002). Captive dolphins, Tursiops truncatus, develop signature whistles that match acoustic features of human-made model sounds. The Journal of the Acoustical Society of America, 112(2), 728–739.

    Google Scholar 

  • Miller, P., Biassoni, N., Samuels, A., & Tyack, P. (2000). Whale songs lengthen in response to sonar. Nature, 405(6789), 903.

    Article  CAS  PubMed  Google Scholar 

  • Mitani, J. C., & Gros-Louis, J. (1998). Chorusing and call convergence in chimpanzees: Tests of three hypotheses. Behaviour, 135, 1041–1064.

    Article  Google Scholar 

  • Moss, C. F., & Sinha, S. R. (2003). Neurobiology of echolocation in bats. Current Opinion in Neurobiology, 13(6), 751–758.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth, E., Pieretti, N., Zollinger, S. A., Geberzahn, N., Partecke, J., Miranda, A. C., et al. (2013). Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122798.

    Article  Google Scholar 

  • Nonaka, S., Takahashi, R., Enomoto, K., Katada, A., & Unno, T. (1997). Lombard reflex during PAG-induced vocalization in decerebrate cats. Neuroscience Research, 29(4), 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm, F. (1970). Ontogeny of bird song. Science, 167(3920), 950–956.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm, F. (1972). The origins of vocal learning. American Naturalist, 106, 116–140.

    Article  Google Scholar 

  • Nottebohm, F., & Liu, W.-C. (2010). The origins of vocal learning: New sounds, new circuits, new cells. Brain and Language, 115, 3–17.

    Article  PubMed  Google Scholar 

  • Nottebohm, F., & Nottebohm, M. E. (1971). Vocalizations and breeding behavior of surgically deafened ring doves (Streptopelia risoria). Animal Behavior, 19, 313–327.

    Article  CAS  Google Scholar 

  • Nowicki, S. (1989). Vocal plasticity in captive black-capped chickades: the acoustic basis and rate of call convergence. Animal Behavior, 37, 64–73.

    Article  Google Scholar 

  • Owren, M. J., Amoss, R. T., & Rendall, D. (2011). Two organizing principles of vocal production: Implications for nonhuman and human primates. American Journal of Primatology, 73(6), 530–544.

    Article  PubMed  Google Scholar 

  • Parks, S. E., Clark, C. W., & Tyack, P. L. (2007). Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communication. The Journal of the Acoustical Society of America, 122(6), 3725–3731.

    Google Scholar 

  • Parris, K. M., Velik-Lord, M., & North, J. M. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14(1), 25.

    Google Scholar 

  • Payne, K., & Payne, R. (1985). Large scale changes over 19 years in songs of humpback whales in Bermuda. Zeitschrift für Tierpsychologie, 68, 89–114.

    Article  Google Scholar 

  • Payne, K., Tyack, P., & Payne, R. (1983). Progressive changes in the songs of humpback whales (Megaptera novaeangliae): A detailed analysis of two seasons in Hawaii. In R. Payne (Ed.), Communication and behavior of whales (pp. 9–57). Boulder, CO: Westview Press.

    Google Scholar 

  • Pepperberg, I. M. (1999). The Alex studies. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pepperberg, I. M. (2010). Vocal learning in grey parrots: A brief review of perception, production, and cross-species comparisons. Brain and Language, 115, 81–91.

    Article  PubMed  Google Scholar 

  • Petkov, C. I., & Jarvis, E. D. (2012). Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4(12), 1–22.

    Google Scholar 

  • Poole, J., Tyack, P., Stoeger-Horwath, A., & Watwood, S. (2005). Elephants are capable of vocal learning. Nature, 434(7032), 455–456.

    Article  CAS  PubMed  Google Scholar 

  • Potash, L. M. (1972). Noise-induced changes in calls of the Japanese quail. Psychonomic Science, 26, 252–254.

    Article  Google Scholar 

  • Potvin, D. A., & Mulder, R. A. (2013). Immediate, independent adjustment of call pitch and amplitude in response to varying background noise by silvereyes (Zosterops lateralis). Behavioral Ecology, 24(6), 1363–1368.

    Article  Google Scholar 

  • Ralls, K., Fiorelli, P., & Gish, S. (1985). Vocalizations and vocal mimicry in captive harbor seals, Phoca vitulina. Canadian Journal of Zoology, 63(5), 1050–1056.

    Article  Google Scholar 

  • Reiss, D., & McCowan, B. (1993). Spontaneous vocal mimicry and production by bottlenose dolphins (Tursiops truncatus): Evidence for vocal learning. Journal of Comparative Psychology, 107(3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Rendell, L., Mesnick, S. L., Dalebout, M. L., Burtenshaw, J., & Whitehead, H. (2012). Can genetic differences explain vocal dialect variation in sperm whales, Physeter macrocephalus? Behavior Genetics, 42(2), 332–343.

    Article  PubMed  Google Scholar 

  • Rendell, L., & Whitehead, H. (2005). Spatial and temporal variation in sperm whale coda vocalizations: Stable usage and local dialects. Animal Behaviour, 70(1), 191–198.

    Article  Google Scholar 

  • Richards, D. G., Wolz, J. P., & Herman, L. M. (1984). Vocal mimicry of computer-generated sounds and vocal labelling of objects by a bottlenosed dolphin, Tursiops truncatus. Journal of Comparative Psychology, 98, 10–28.

    Article  CAS  PubMed  Google Scholar 

  • Romand, R., & Ehret, G. (2004). Development of sound production in normal, isolated, and deafened kittens during the first postnatal months. Developmental Psychobiology, 17, 629–649.

    Article  Google Scholar 

  • Ryan, M. J., Tuttle, M. D., & Rand, A. S. (1982). Bat predation and sexual advertisement in a neotropical frog. American Naturalist, 119, 136–139.

    Article  Google Scholar 

  • Sanvito, S., Galimberti, F., & Miller, E. H. (2007). Observational evidences of vocal learning in southern elephant seals: a longitudinal study. Ethology, 113, 137–146.

    Article  Google Scholar 

  • Scheiner, E., Hammerschmidt, K., Jürgens, U., & Zwirner, P. (2006). Vocal expression of emotions in normally hearing and hearing-impaired infants. Journal of Voice, 20(4), 585–604.

    Article  PubMed  Google Scholar 

  • Schleidt, W. (1961). Operative Entfernung des Gehörorgans ohne Schädigung angrenzender Labyrinthteile bei Putenküken. Experientia, 17, 464–465.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, C., & Weaver, W. (1963). Mathematical theory of communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Simpson, H. B., & Vicario, D. S. (1990). Brain pathways for learned and unlearned vocalizations differ in zebra finches. The Journal of Neuroscience, 10(5), 1541–1556.

    CAS  PubMed  Google Scholar 

  • Slabbekoorn, H., & Peet, M. (2003). Birds sing at a higher pitch in urban noise. Nature, 424, 267.

    Article  CAS  PubMed  Google Scholar 

  • Smolker, R., & Pepper, J. W. (1999). Whistle convergence among allied male bottlenose dolphins (Delphinidae, Tursiops sp). Ethology, 105, 595–617.

    Article  Google Scholar 

  • Snowdon, C. T., & Elowson, A. M. (1999). Pygmy marmosets modify call structure when paired. Ethology, 105, 893–908.

    Article  Google Scholar 

  • Stoeger, A. S., Mietchen, D., Oh, S., de Silva, S., Herbst, C. T., Kwon, S., et al. (2012). An Asian elephant imitates human speech. Current Biology, 22(22), 2144–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Street, R. L., & Giles, H. (1982). Speech accommodation theory: A social cognitive approach to language and speech behavior. In M. Roloff & C. R. Berger (Eds.), Social cognition and communication (pp. 193–226). Beverly Hills, CA: Sage.

    Google Scholar 

  • Sugiura, H. (1998). Matching of acoustic features during the vocal exchange of coo calls by Japanese macaques. Animal Behavior, 55, 673–687.

    Article  Google Scholar 

  • Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Todt, D. (1975). Social learning of vocal patterns and modes of their application in grey parrots (Psittacus erithacus). Zeitschrift für Tierpsychologie, 39, 178–188.

    Article  Google Scholar 

  • Trainer, J. M. (1989). Cultural evolution in song dialects of yellow-rumped caciques in Panama. Ethology, 80, 190–204.

    Article  Google Scholar 

  • Turnbull, S., & Terhune, J. (1993). Repetition enhances hearing detection thresholds in a harbour seal (Phoca vitulina). Canadian Journal of Zoology, 71(5), 926–932.

    Article  Google Scholar 

  • Tyack, P. L. (1986). Population biology, social behavior, and communication in whales and dolphins. Trends in Ecology and Evolution, 1, 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky, N., Fenton, M. B., Tsoar, A., & Korine, C. (2004). Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 271(1547), 1467–1475.

    Article  Google Scholar 

  • Vehrencamp, S. L. (2001). Is song-type matching a conventional signal of aggressive intentions? Proceedings of the Royal Society of London B: Biological Sciences, 268, 1637–1642.

    Article  CAS  Google Scholar 

  • Watson, S. K., Townsend, S. W., Schel, A. M., Wilke, C., Wallace, E. K., Cheng, L., et al. (2015). Vocal learning in the functionally referential food grunts of chimpanzees. Current Biology, 25(4), 495–499.

    Article  CAS  PubMed  Google Scholar 

  • Watwood, S., Tyack, P., & Wells, R. (2004). Whistle sharing in paired male bottlenose dolphins, Tursiops truncatus. Behavioral Ecology and Sociobiology, 55(6), 531–543.

    Article  Google Scholar 

  • Weiss, D. J., Garibaldi, B. T., & Hauser, M. D. (2001). The production and perception of long calls by cotton-top tamarins (Saguinus oedipus): Acoustic analyses and playback experiments. Journal of Comparative Psychology, 115, 258–271.

    Article  CAS  PubMed  Google Scholar 

  • Wemmer, C., & Mishra, H. R. (1982). Observational learning by an Asiatic elephant of an unusual sound production method. Mammalia, 46, 556–557.

    Google Scholar 

  • West, M. J., & King, A. P. (1988). Female visual displays affect the development of male song in the cowbird. Nature, 334, 244–246.

    Article  CAS  PubMed  Google Scholar 

  • Wich, S. A., Swartz, K. B., Hardus, M. E., Lameira, A. R., Stromberg, E., & Shumaker, R. W. (2009). A case of spontaneous acquisition of a human sound by an orangutan. Primates, 50(1), 56–64.

    Article  PubMed  Google Scholar 

  • Wild, J. M. (1997). Neural pathways for the control of birdsong production. Journal of Neurobiology, 33(5), 653–670.

    Article  CAS  PubMed  Google Scholar 

  • Winter, P., Handley, P., Ploog, D., & Schott, D. (1973). Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour, 47, 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Zahavi, A., & Zahavi, A. (1997). The handicap principle. Oxford, England: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

P. L. T. thanks Henrik Brumm, Bjorn Merker, Arthur Popper, Peter Slater, and Rod Suthers for very helpful comments on an earlier draft of this chapter. This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Tyack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tyack, P.L. (2016). Vocal Learning and Auditory-Vocal Feedback. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_9

Download citation

Publish with us

Policies and ethics