Skip to main content

Embodied Motor Control of Avian Vocal Production

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

Recent developments in biologically inspired robotics and artificial intelligence emphasize the need for a systems view on motor control, termed embodied motor control. Embodied control systems consider the brain, body, and environment and incorporate mechanical and neural feedback. The control system thus forms a closed loop of which the biomechanics are an integral part. This chapter presents the motor control of avian vocal production in the framework of embodied control. Our conceptual framework identifies and discusses the forces produced in the three embodied motor subsystems [the respiratory system, the vocal organ (the syrinx), and the upper vocal tract] and various feedback mechanisms. It becomes evident that compared to other neuromechanical systems very essential quantitative information is lacking. However, the great advantage of the birdsong system is that it, in contrast to humans, provides much better experimental opportunities to quantify all aspects of the vocal motor control system. Neural activity and many physiological parameters can be monitored chronically in vivo during highly stereotyped song. Furthermore, complementary measurement techniques, for example, in vitro and ex vivo, and the development of computational models focusing on different levels of organization within the system, are essential to fill the gaps where experimental observations remain too challenging. The combination of exciting developments, and the large natural variation present in the system, make vocal motor control in birds an excellent model system where many discoveries are waiting to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour, F., & Vigmostad, S. (2012). Measurement of vocal folds elastic properties for continuum modeling. Journal of Voice, 26(6), 816. doi:10.1016/j.jvoice.2012.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amador, A., & Margoliash, D. (2013). A mechanism for frequency modulation in songbirds shared with humans. Journal of Neuroscience, 33, 11136–11144. doi:10.1523/JNEUROSCI.5906-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador, A., & Mindlin, G. B. (2014). Low dimensional dynamics in birdsong production. European Physical Journal B, 87, 300. doi:10.1140/epjb/e2014-50566-5.

    Article  CAS  Google Scholar 

  • Amador, A., Perl, Y. S., Mindlin, G. B., & Margoliash, D. (2013). Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature, 495, 59–64. doi:10.1038/nature11967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames, P. L. (1971). The morphology of the syrinx in passerine birds. Peabody Museum Natural History, Yale University, 37, 1–194.

    Google Scholar 

  • Appel, F. W. (1929). Sex dimorphism in the syrinx of the fowl. Journal of Morphology, 47, 497–517.

    Article  Google Scholar 

  • Bass, A. H., & Chagnaud, B. P. (2012). Shared developmental and evolutionary origins for neural basis of vocal–acoustic and pectoral–gestural signaling. Proceedings of the National Academy of Sciences of the USA, 109, 10677–10684. doi:10.1073/pnas.1201886109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, A. H., Gilland, E. H., & Baker, R. (2008). Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment. Science, 321, 417–421. doi:10.1126/science.1157632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumel, J. J., King, A. S., & Breazil, J. E. (1993). Handbook of avian anatomy: Nomina anatomica avium. Cambridge, MA: Publications of the Nuttall Ornithological Club.

    Google Scholar 

  • Baumel, J. J., Wilson, J. A., & Bergren, D. R. (1990). The ventilatory movements of the avian pelvis and tail: Function of the muscles of the tail region of the pigeon (Columba livia). Journal of Experimental Biology, 151, 263–277.

    CAS  PubMed  Google Scholar 

  • Beckers, G. J. L., Nelson, B. S., & Suthers, R. A. (2004). Vocal-tract filtering by lingual articulation in a parrot. Current Biology, 14, 1592–1597. doi:10.1016/j.cub.2004.08.057.

    Article  CAS  PubMed  Google Scholar 

  • Beckers, G. J. L., Suthers, R. A., & Ten Cate, C. (2003). Mechanisms of frequency and amplitude modulation in ring dove song. Journal of Experimental Biology, 206, 1833–1843.

    Article  PubMed  Google Scholar 

  • Bennet-Clark, H. C. (1999). Resonators in insect sound production: How insects produce loud pure-tone songs. Journal of Experimental Biology, 202, 3347–3357.

    CAS  PubMed  Google Scholar 

  • Berwick, R. C., Okanoya, K., Beckers, G. J. L., & Bolhuis, J. J. (2011). Songs to syntax: The linguistics of birdsong. Trends in Cognitive Science, 15, 113–121. doi:10.1016/j.tics.2011.01.002.

    Article  Google Scholar 

  • Biewener, A. A., & Daley, M. A. (2007). Unsteady locomotion: Integrating muscle function with whole body dynamics and neuromuscular control. Journal of Experimental Biology, 210, 2949–2960.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolhuis, J. J., Zijlstra, G. G., Den Boer-Visser, A. M., & Van Der Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97, 2282–2285. doi:10.1073/pnas.030539097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottjer, S. W., & Arnold, A. P. (1982). Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase. Journal of Comparative Neurology, 210, 190–197. doi:10.1002/cne.902100209.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer, S. W., & To, M. (2012). Afferents from vocal motor and respiratory effectors are recruited during vocal production in juvenile songbirds. Journal of Neuroscience, 32, 10895–10906. doi:10.1523/JNEUROSCI.0990-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackenbury, J. H. (1979). Power capabilities of the avian sound-producing system. Journal of Experimental Biology, 78, 163–166.

    Google Scholar 

  • Brackenbury, J. H., Darby, C., & Mahmoud, S. E.-S. (1989). Respiratory function in exercising fowl following occlusion of the thoracic air sacs. Journal of Experimental Biology, 145(1), 227–237.

    Google Scholar 

  • Brainard, M. S., & Doupe, A. J. (2013). Translating birdsong: Songbirds as a model for basic and applied medical research. Annual Reviews Neuroscience, 36, 489–517. doi:10.1146/annurev-neuro-060909-152826.

    Article  CAS  Google Scholar 

  • Bretz, W. L., & Schmidt-Nielsen, K. (1971). Bird respiration: Flow patterns in the duck lung. Journal of Experimental Biology, 54, 103–118.

    CAS  PubMed  Google Scholar 

  • Brown, R., Kovacs, C., Butler, J., Wang, N. I. N. G., Lehr, J. O. H. N., & Banzett, R. (1995). The avian lung: Is there an aerodynamic expiratory valve? Journal of Experimental Biology, 198(11), 2349–2357.

    PubMed  Google Scholar 

  • Casey, R. M., & Gaunt, A. S. (1985). Theoretical models of the avian syrinx. Journal of Theoretical Biology, 116, 45–64.

    Article  Google Scholar 

  • Chamberlain, D. R., Gross, W. B., Cornwell, G. W., & Mosby, H. S. (1968). Syringeal anatomy in the common crow. The Auk, 85, 244–252.

    Article  Google Scholar 

  • Claessens, L. P. A. M. (2009). The skeletal kinematics of lung ventilation in three basal bird taxa (emu, tinamou, and guinea fowl). Journal of Experimental Zoology, 311, 586–599. doi:10.1002/jez.501.

    Article  PubMed  Google Scholar 

  • Cooper, B. G., & Goller, F. (2004). Multimodal signals: Enhancement and constraint of song motor patterns by visual display. Science, 303, 544–546. doi:10.1126/science.1091099.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, N. J., Ankarali, M. M., Dyhr, J. P., Madhav, M. S., Roth, E., Sefati, S., Sponberg, S., Stamper, S. A., Fortune, E. S., & Daniel, T. L. (2014). Feedback control as a framework for understanding tradeoffs in biology. Integrative and Comparative Biology, 54, 223–237. doi:10.1093/icb/icu050.

    Article  PubMed  Google Scholar 

  • D’Avella, A., & Lacquaniti, F. (2013). Control of reaching movements by muscle synergy combinations. Frontiers in Computational Neuroscience, 7, 42. doi:10.3389/fncom.2013.00042.

    PubMed  PubMed Central  Google Scholar 

  • Daley, M., & Goller, F. (2004). Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering. Journal of Neurobiology, 59, 319–330. doi:10.1002/neu.10332.

    Article  PubMed  Google Scholar 

  • Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehmann, S. (2000). How animals move: An integrative view. Science, 288, 100–106. doi:10.1126/science.288.5463.100.

    Article  CAS  PubMed  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Reviews Neuroscience, 22, 567–631.

    Article  CAS  Google Scholar 

  • Duncker, H. R. (1972). Structure of avian lungs. Respiration Physiology, 14, 44–64.

    Article  CAS  PubMed  Google Scholar 

  • Duncker, H. R. (2004). Vertebrate lungs: Structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respiratory Physiology & Neurobiology, 144(2–3), 111–124. doi:10.1016/j.resp.2004.07.020.

    Article  Google Scholar 

  • Düring, D. N., Ziegler, A., Thompson, C. K., Ziegler, A., Faber, C., Müller, J., Scharff, C., & Elemans, C. P. H. (2013). The songbird syrinx morphome: A three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biology, 11, 1. doi:10.1186/1741-7007-11-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürrwang, R. (1974). Funktionelle biologie, anatomie und physiologie der vogelstimme. Basel, Switzerland: Aku-Fotodruck.

    Google Scholar 

  • Elemans, C. P. H. (2014). The singer and the song: The neuromechanics of avian sound production. Current Opinion in Neurobiology, 28, 172–178. doi:10.1016/j.conb.2014.07.022.

    Article  CAS  PubMed  Google Scholar 

  • Elemans, C. P. H, Düring, D. N., Herbst, C. T., Rasmussen, J. H., Zollinger, S. A., & Brumm, H. et al. (2015). Universal mechanism of sound production and control in birds and mammals. Nature Communications, 6, 1–13. doi: 10.1038/ncomms9978.

  • Elemans, C. P. H., Laje, R., Mindlin, G. B., & Goller, F. (2010). Smooth operator: Avoidance of subharmonic bifurcations through mechanical mechanisms simplifies song motor control in adult zebra finches. Journal of Neuroscience, 30, 13246–13253. doi:10.1523/JNEUROSCI.1130-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888. doi:10.1126/science.1207309.

    Article  CAS  PubMed  Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Rome, L. C., & Goller, F. (2008a). Superfast vocal muscles control song production in songbirds. PLoS ONE, 3, e2581. doi:10.1371/journal.pone.0002581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elemans, C. P. H., Mensinger, A. F., & Rome, L. C. (2014). Vocal production complexity correlates with neural instructions in the oyster toadfish (Opsanus tau). Journal of Experimental Biology, 217, 1887–1893. doi:10.1242/jeb.097444.

    Article  PubMed  Google Scholar 

  • Elemans, C. P. H., Muller, M., Larsen, O. N., & Van Leeuwen, J. L. (2009). Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx. Journal of Experimental Biology, 212, 1212–1224. doi:10.1242/jeb.026872.

    Article  PubMed  Google Scholar 

  • Elemans, C. P. H., Spierts, I. L. Y., Hendriks, M., Schipper, H., Müller, U. K., & Leeuwen, J. L. (2006). Syringeal muscles fit the trill in ring doves (Streptopelia risoria L.). Journal of Experimental Biology, 209(Pt 5), 965–977. doi:10.1242/jeb.02066.

    Article  CAS  PubMed  Google Scholar 

  • Elemans, C. P. H., Spierts, I. L. Y., Müller, U. K., Leeuwen, J. L., & Goller, F. (2004). Bird song: Superfast muscles control dove’s trill. Nature, 431, 146. doi:10.1038/431146a.

    Article  CAS  PubMed  Google Scholar 

  • Elemans, C. P. H., Zaccarelli, R., & Herzel, H. (2008b). Biomechanics and control of vocalization in a non-songbird. Journal of the Royal Society Interface, 5, 691–703. doi:10.1098/rsif.2007.1237.

    Article  PubMed Central  Google Scholar 

  • Enflo, L., Sundberg, J., Romedahl, C., & McAllister, A. (2013). Effects on vocal fold collision and phonation threshold pressure of resonance tube phonation with tube end in water. Journal of Speech Language and Hearing, 56(5), 1530–1538. doi:10.1044/1092-4388(2013/12-0040).

    Article  Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague, the Netherlands: Mouton.

    Google Scholar 

  • Fee, M. S. (2002). Measurement of the linear and nonlinear mechanical properties of the oscine syrinx: Implications for function. Journal of Comparative Physiology A, 188, 829–839. doi:10.1007/s00359-002-0349-z.

    Article  Google Scholar 

  • Fee, M. S., & Goldberg, J. H. (2011). A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience, 198, 152–170. doi:10.1016/j.neuroscience.2011.09.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fee, M. S., & Scharff, C. (2010). The songbird as a model for the generation and learning of complex sequential behaviors. ILAR Journal, 51, 362–377.

    Article  CAS  PubMed  Google Scholar 

  • Fee, M. S., Shraiman, B., Pesaran, B., & Mitra, P. P. (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395, 67–71. doi:10.1038/25725.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T. (1999). Acoustic exaggeration of size in birds via tracheal elongation: Comparative and theoretical analyses. Journal of Zoology, 248, 31–48.

    Article  Google Scholar 

  • Fitch, W. T. (2006). Production of vocalizations in mammals. Visual Communication, 3, 145.

    Google Scholar 

  • Fletcher, N. H. (1988). Bird song: A quantitative acoustic model. Journal of Theoretical Biology, 135, 455–481.

    Article  Google Scholar 

  • Fletcher, N. H. (2000). A class of chaotic bird calls? The Journal of the Acoustical Society of America, 108, 821–826.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, N. H., Riede, T., Beckers, G. J. L., & Suthers, R. A. (2004). Vocal tract filtering and the “coo” of doves. The Journal of the Acoustical Society of America, 116, 3750–3756. doi:10.1121/1.1811491.

    Article  PubMed  Google Scholar 

  • Fletcher, N. H., & Rossing, T. D. (1998). The physics of musical instruments (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Fletcher, N., & Tarnopolsky, A. (1998). Acoustics of the avian vocal tract. The Journal of the Acoustical Society of America, 103, 2827.

    Article  Google Scholar 

  • Frank, T., Walter, I., Probst, A., & König, H. E. (2006). Histological aspects of the syrinx of the male mallard (Anas platyrhynchos). Anatomy Histology Embryology, 35, 396–401. doi:10.1111/j.1439-0264.2006.00701.x.

    Article  CAS  Google Scholar 

  • Gagliardo, A., Ioalè, P., Savini, M., & Wild, J. M. (2006). Having the nerve to home: Trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. Journal of Experimental Biology, 209, 2888–2892. doi:10.1242/jeb.02313.

    Article  CAS  PubMed  Google Scholar 

  • Galler, S., Hilber, K., & Pette, D. (1997). Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 18, 441–448. doi:10.1023/A:1018646814843.

    Article  CAS  PubMed  Google Scholar 

  • Garitano-Zavala, A. (2009). Evolutionary loss of the extrinsic syringeal muscle sternotrachealis in Darwin’s Nothura (Nothura darwinii). The Auk, 126, 134–140. doi:10.1525/auk.2009.08026.

    Article  Google Scholar 

  • Gaunt, A. S., Gaunt, S. L. L., & Casey, R. M. (1982). Syringeal mechanics reassessed: Evidence from Streptopelia. The Auk, 99, 474–494.

    Google Scholar 

  • Goller, F., & Cooper, B. G. (2004). Peripheral motor dynamics of song production in the zebra finch. Annals of the New York Academy of Sciences, 1016, 130–152. doi:10.1196/annals.1298.009.

    Article  PubMed  Google Scholar 

  • Goller, F., & Cooper, B. G. (2008). Peripheral mechanisms of sensorimotor integration during singing. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong (pp. 99–114). New York: Cambridge University Press.

    Google Scholar 

  • Goller, F., & Larsen, O. N. (1997a). A new mechanism of sound generation in songbirds. Proceedings of the National Academy of Sciences of the USA, 94, 14787–14791. doi:10.1073/pnas.94.26.14787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goller, F., & Larsen, O. N. (1997b). In situ biomechanics of the syrinx and sound generation in pigeons. Journal of Experimental Biology, 200, 2165–2176.

    CAS  PubMed  Google Scholar 

  • Goller, F., & Riede, T. (2013). Integrative physiology of fundamental frequency control in birds. Journal of Physiology, Paris, 107, 230–242. doi:10.1016/j.jphysparis.2012.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gribble, P. L., Mullin, L. I., Cothros, N., & Mattar, A. (2003). Role of cocontraction in arm movement accuracy. Journal of Neurophysiology, 89, 2936–2405. doi:10.1152/jn.01020.2002.

    Article  Google Scholar 

  • Guzman, M., Laukkanen, A. M., Krupa, P., Horáček, J., Švec, J. G., & Geneid, A. (2013). Vocal tract and glottal function during and after vocal exercising with resonance tube and straw. Journal of Voice, 27(4), 523. e19.

    Article  PubMed  Google Scholar 

  • Häcker, V. (1900). Der Gesang der Vögel: Anatomische und biologische Grundlagen. Jena, Germany: Gustav Fischer.

    Google Scholar 

  • Henrywood, R. H., & Agarwal, A. (2013). The aeroacoustics of a steam kettle. Physical Fluids, 25, 107101. doi:10.1063/1.4821782.

    Article  CAS  Google Scholar 

  • Herbst, C. T., Stoeger, A. S., Frey, R., Lohscheller, J., Titze, I. R., Gumpenberger, M., & Fitch, W. T. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science, 337, 595–599. doi:10.1126/science.1219712.

    Article  CAS  PubMed  Google Scholar 

  • Hérissant, F. D. (1753). Untersuchung über die Stimmwerkzeuge der Vierfüßer und der Vögel. Mémoiares De l’Academie des Sciences, 1(457).

    Google Scholar 

  • Hill, A. V., & Howarth, J. V. (1957). Alternating relaxation heat in muscle twitches. Journal of Physiology (London), 139, 466–473.

    Article  CAS  Google Scholar 

  • Hodson-Tole, E. F., & Wakeling, J. M. (2009). Motor unit recruitment for dynamic tasks: Current understanding and future directions. Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 179, 57–66. doi:10.1007/s00360-008-0289-1.

    Article  Google Scholar 

  • Hoffmann, M., & Pfeifer, R. (2012). The implications of embodiment for behavior and cognition: Animal and robotic case studies. In W. Tschacher & C. Bergomi (Eds.), The implications of embodiment: Cognition and communication (pp. 31–58). Exeter, England: Imprint Academic.

    Google Scholar 

  • Hogg, D. A. (1982). Ossification of the laryngeal, tracheal and syringeal cartilages in the domestic-fowl. Journal of Anatomy, 134, 57–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Homberger, D. G., & Meyers, R. A. (1989). Morphology of the lingual apparatus of the domestic chicken, Gallus gallus, with special attention to the structure of the fasciae. American Journal of Anatomy, 186, 217–57. doi:10.1002/aja.1001860302.

    Article  CAS  PubMed  Google Scholar 

  • Huxley, T. H. (1871). A manual of the anatomy of vertebrated animals. New York: D. Appleton.

    Book  Google Scholar 

  • Huxley, H., & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 173, 973–976.

    Article  CAS  PubMed  Google Scholar 

  • Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature, 173, 971–973.

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51, 1233–1268. doi:10.1002/j.1538-7305.1972.tb02651.x.

    Article  Google Scholar 

  • Jarvis, E. D., Mirarab, S., Aberer, A. J., et al. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346, 1320–1331. doi:10.1126/science.1253451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, K. K., Cooper, B. G., Larsen, O. N., & Goller, F. (2007). Songbirds use pulse tone register in two voices to generate low-frequency sound. Proceedings of Biological Science, 274, 2703–2710. doi:10.1098/rspb.2007.0781.

    Article  Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global distribution and conservation of evolutionary distinctness in birds. Current Biology, 24, 919–930. doi:10.1016/j.cub.2014.03.011.

    Article  CAS  PubMed  Google Scholar 

  • Josephson, R. K. (1985). The mechanical power output from striated muscle during cyclic contraction. Journal of Experimental Biology, 118, 185–208.

    Google Scholar 

  • King, A. S. (1989). Functional anatomy of the syrinx. In A. S. King & J. McLelland (Eds.), Form and function in birds (pp. 105–192). New York: Academic Press.

    Google Scholar 

  • King, A. S. (1993). Apparatus respiratorius. In J. J. Baumel (Ed.), Handbook of avian anatomy (2nd ed., pp. 257–300). Cambridge, MA: Nuttall Ornithological Club.

    Google Scholar 

  • Klatt, D. H., & Klatt, L. C. (1990). Analysis, synthesis, and perception of voice quality variations among female and male talkers. The Journal of the Acoustical Society of America, 87, 820–857.

    Article  CAS  PubMed  Google Scholar 

  • Knudson, D. (2007). Fundamentals of biomechanics. New York: Springer.

    Google Scholar 

  • Konishi, M. (1985). Birdsong: From behavior to neuron. Annual Review of Neuroscience, 8, 125–170.

    Article  CAS  PubMed  Google Scholar 

  • Laje, R., & Mindlin, G. (2005). The physics of birdsong. Berlin, Germany: Springer.

    Google Scholar 

  • Larsen, O. N., & Goller, F. (2002). Direct observation of syringeal muscle function in songbirds and a parrot. Journal of Experimental Biology, 205, 25–35.

    PubMed  Google Scholar 

  • Loeb, G. E., & Gans, C. (1986). Electromyography for experimentalists (1st ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  • Long, M. A., Jin, D. Z., & Fee, M. S. (2010). Support for a synaptic chain model of neuronal sequence generation. Nature, 468, 394–399. doi:10.1038/nature09514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang, R., & Goller, F. (2013). Ventilation patterns of the songbird lung/air sac system during different behaviors. Journal of Experimental Biology, 216, 3611–3619. doi:10.1242/jeb.087197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maina, J. N. (2006). Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: To go where no other vertebrate has gone. Biological Reviews, 81, 545–579. doi:10.1111/j.1469-185X.2006.tb00218.x.

    Article  PubMed  Google Scholar 

  • Maina, J. N., Singh, P., & Moss, E. A. (2009). Inspiratory aerodynamic valving occurs in the ostrich, Struthio camelus lung: A computational fluid dynamics study under resting unsteady state inhalation. Respiratory Physiology & Neurobiology, 169(3), 262–270.

    Article  CAS  Google Scholar 

  • Maina, J. N., West, J. B., Orgeig, S., Foot, N. J., Daniels, C. B., Kiama, S. G., Gehr, P., Mühlfeld, C., Blank, F., Müller, L., Lehmann, A., Brandenberger, C., & Rothen‐Rutishauser, B. (2010). Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiology Biochemistry Zoology, 83, 792–807. doi:10.1086/652244.

    Article  CAS  Google Scholar 

  • Marler, P. (1970). A comparative approach to vocal learning: Song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology, 50, 83–97. doi:10.1037/h0029144.

    Google Scholar 

  • Marler, P. (2004). Bird calls: Their potential for behavioral neurobiology. Annals of the New York Academy of Sciences, 1016, 31–44. doi:10.1196/annals.1298.034.

    Article  PubMed  Google Scholar 

  • Marler, P. R., & Slabbekoorn, H. (2004). Nature’s music: The science of birdsong. San Diego, CA: Elsevier Academic Press.

    Google Scholar 

  • Marques, H. G., Bharadwaj, A., & Iida, F. (2014). From spontaneous motor activity to coordinated behaviour: A developmental model. PLoS Computational Biology, 10, e1003653. doi:10.1371/journal.pcbi.1003653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLean, J., Bricault, S., & Schmidt, M. F. (2013). Characterization of respiratory neurons in the rostral ventrolateral medulla, an area critical for vocal production in songbirds. Journal of Neurophysiology, 109, 948–957. doi:10.1152/jn.00595.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Méndez, J. M., Dall’Asen, A. G., & Goller, F. (2010). Disrupting vagal feedback affects birdsong motor control. Journal of Experimental Biology, 213, 4193–4204. doi:10.1242/jeb.045369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelsen, A., Towne, W. F., Kirchner, W. H., & Kryger, P. (1987). The acoustic near field of a dancing honeybee. Journal of Comparative Physiology A, 161, 633–643. doi:10.1007/BF00605005.

    Article  Google Scholar 

  • Mittal, R., Erath, B. D., & Plesniak, M. W. (2013). Fluid dynamics of human phonation and speech. Annual Reviews of Fluid Mechanics, 45, 437–467. doi:10.1146/annurev-fluid-011212-140636.

    Article  Google Scholar 

  • Mooney, T. A., Nachtigall, P. E., Taylor, K. A., Rasmussen, M. H., & Miller, L. A. (2009). Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, 375–384. doi:10.1007/s00359-009-0415-x.

    Article  PubMed  Google Scholar 

  • Nelson, B. S., Beckers, G. J. L., & Suthers, R. A. (2005). Vocal tract filtering and sound radiation in a songbird. Journal of Experimental Biology, 208, 297–308. doi:10.1242/jeb.01378.

    Article  PubMed  Google Scholar 

  • Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J., Daley, M. A., et al. (2007). Neuromechanics: An integrative approach for understanding motor control. Integrative and Comparative Biology, 47(1), 16–54.

    Article  PubMed  Google Scholar 

  • Nocella, M., Cecchi, G., Bagni, M. A., & Colombini, B. (2014). Force enhancement after stretch in mammalian muscle fiber: No evidence of cross-bridge involvement. American Journal of Physiology, 307, C1123–C1129. doi:10.1152/ajpcell.00290.2014.

    Article  CAS  PubMed  Google Scholar 

  • Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: Evidence from birdsongs in a helium atmosphere. Nature, 325, 53–55. doi:10.1038/325053a0.

    Article  CAS  PubMed  Google Scholar 

  • Nowicki, S., & Capranica, R. R. (1986). Bilateral syringeal interaction in vocal production of an oscine bird sound. Science, 231, 1297–1299.

    Article  CAS  PubMed  Google Scholar 

  • Odom, K. J., Hall, M. L., Riebel, K., Omland, K. E., & Langmore, N. E. (2014). Female song is widespread and ancestral in songbirds. Nature Communications, 5, 3379. doi:10.1038/ncomms4379.

    Article  PubMed  CAS  Google Scholar 

  • Ohms, V. R., Snelderwaard, P. C., Ten Cate, C., & Beckers, G. J. (2010). Vocal tract articulation in zebra finches. PLoS ONE, 5, e11923. doi:10.1371/journal.pone.0011923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmentier, E., Lagardère, J. P., Braquegnier, J. B., Vandewalle, P., & Fine, M. L. (2006). Sound production mechanism in carapid fish: First example with a slow sonic muscle. Journal of Experimental Biology, 209, 2952–2960. doi:10.1242/jeb.02350.

    Article  PubMed  Google Scholar 

  • Paulsen, K. (1967). Das Prinzip der Stimmbildung in der Wirbeltierreihe und beim Menschen. Frankfurt am Main, Germany: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Pfeifer, R., Iida, F., & Lungarella, M. (2014). Cognition from the bottom up: On biological inspiration, body morphology, and soft materials. Trends in Cognitive Science, 18(8), 404–413. doi:10.1016/j.tics.2014.04.004.

    Article  Google Scholar 

  • Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318, 1088–1093. doi:10.1126/science.1145803.

    Article  CAS  PubMed  Google Scholar 

  • Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., et al. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 346(6125), 1256846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Podos, J. (2004). Vocal mechanics in Darwin’s finches: Correlation of beak gape and song frequency. Journal of Experimental Biology, 207, 607–619. doi:10.1242/jeb.00770.

    Article  PubMed  Google Scholar 

  • Prince, B., Riede, T., & Goller, F. (2011). Sexual dimorphism and bilateral asymmetry of syrinx and vocal tract in the European starling (Sturnus vulgaris). Journal of Morphology, 272, 1527–1536. doi:10.1002/jmor.11007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reger, J. F. (1978). A comparative study on the fine structure of tongue and cricothyroid muscle of the bat, Myotis grisescens, as revealed by thin section and freeze-fracture techniques. Journal of Ultrastructure Research, 63, 275.

    Article  CAS  PubMed  Google Scholar 

  • Riede, T., Beckers, G. J. L., Blevins, W., & Suthers, R. A. (2004). Inflation of the esophagus and vocal tract filtering in ring doves. Journal of Experimental Biology, 207, 4025–4036. doi:10.1242/jeb.01256.

    Article  PubMed  Google Scholar 

  • Riede, T., Fisher, J. H., & Goller, F. (2010). Sexual dimorphism of the zebra finch syrinx indicates adaptation for high fundamental frequencies in males. PLoS ONE, 5, e11368. doi:10.1371/journal.pone.0011368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riede, T., & Goller, F. (2010a). Peripheral mechanisms for vocal production in birds—Differences and similarities to human speech and singing. Brain and Language, 115, 69–80. doi:10.1016/j.bandl.2009.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., & Goller, F. (2010b). Functional morphology of the sound-generating labia in the syrinx of two songbird species. Journal of Anatomy, 216, 23–36. doi:10.1111/j.1469-7580.2009.01161.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., & Goller, F. (2014). Morphological basis for the evolution of acoustic diversity in oscine songbirds. Proceedings of the Royal Society B: Biological Sciences, 281, 20132306. doi:10.1098/rspb.2013.2306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., Schilling, N., & Goller, F. (2012). The acoustic effect of vocal tract adjustments in zebra finches. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 199, 57–69. doi:10.1007/s00359-012-0768-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., & Suthers, R. A. (2008). Vocal tract motor patterns and resonance during constant frequency song: The white-throated sparrow. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, 183–192. doi:10.1007/s00359-008-0397-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins, W. E. (2006). Songbirds tune their vocal tract to the fundamental frequency of their song. Proceedings of the National Academy of Sciences of the USA, 103, 5543–5548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, T. J., Marsh, R. L., Weyand, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: The economy of minimizing work. Science, 275, 1113–1115.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, T. F., Wild, J. M., Kubke, M. F., & Mooney, R. (2007). Homogeneity of intrinsic properties of sexually dimorphic vocal motoneurons in male and female zebra finches. Journal of Comparative Neurology, 502, 157–169. doi:10.1002/cne.21310.

    Article  PubMed  Google Scholar 

  • Rome, L. C. (2006). Design and function of superfast muscles: New insights into the physiology of skeletal muscle. Annual Reviews of Physiology, 68, 193–221. doi:10.1146/annurev.physiol.68.040104.105418.

    Article  CAS  Google Scholar 

  • Roth, E., Sponberg, S., & Cowan, N. J. (2014). A comparative approach to closed-loop computation. Current Opinion in Neurobiology, 25, 54–62. doi:10.1016/j.conb.2013.11.005.

    Article  CAS  PubMed  Google Scholar 

  • Rüppell, W. (1933). Physiologie und Akustik der Vogelstimme. Journal of Ornithology, 81, 433–542.

    Article  Google Scholar 

  • Schmidt, M. F., McLean, J., & Goller, F. (2012). Breathing and vocal control: The respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds. Experimental Physiology, 97, 455–461. doi:10.1113/expphysiol.2011.058669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selen, L. P. J., Beek, P. J., & Van Dieën, J. H. (2006). Impedance is modulated to meet accuracy demands during goal-directed arm movements. Experimental Brain Research, 172, 129–138. doi:10.1007/s00221-005-0320-7.

    Article  PubMed  Google Scholar 

  • Setterwall, C. G. (1901). Syrinx hos polymyoda passeres. Lund, Sweden: Gleerupska Universitetsbokhandeln.

    Google Scholar 

  • Slabbekoorn, H., & Smith, T. B. (2002). Bird song, ecology and speciation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 357, 493–503. doi:10.1098/rstb.2001.1056.

    Article  PubMed Central  Google Scholar 

  • Srivastava, K. H., Elemans, C. P. H., & Sober, S. J. (2015). Multifunctional and context-dependent control of vocal acoustics by individual muscles. Journal of Neuroscience, 35(42), 14183–14194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthers, R. A., & Goller, F. (1997). Motor correlates of vocal diversity in songbirds. In V. Nolan Jr., E. D. Ketterson, & C. F. Thompson (Eds.), Current ornithology (pp. 235–288). New York: Springer.

    Chapter  Google Scholar 

  • Suthers, R. A., Goller, F., & Wild, M. (2002). Somatosensory feedback modulates the respiratory motor program of crystallized birdsong. Proceedings of the National Academy of Sciences of the USA, 99(8), 5680–5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthers, R. A., & Hector, D. H. (1985). The physiology of vocalization by the echolocating oilbird, Steatornis caripensis. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 156, 243–266.

    Article  Google Scholar 

  • Suthers, R. A., Vallet, E., & Kreutzer, M. (2012). Bilateral coordination and the motor basis of female preference for sexual signals in canary song. Journal of Experimental Biology, 215, 2950–2959. doi:10.1242/jeb.071944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suthers, R. A., & Zollinger, S. A. (2008). From brain to song: The vocal organ and vocal tract. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong (pp. 78–98). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Tang, C., Chehayeb, D., Srivastava, K., Nemenman, I., & Sober, S. J. (2014). Millisecond-scale motor encoding in a cortical vocal area. PLoS Biology, 12(12), e1002018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor, G., Triantafyllou, M. S., & Tropea, C. (2010). Animal locomotion. New York: Springer.

    Book  Google Scholar 

  • Tchernichovski, O., Mitra, P. P., Lints, T., & Nottebohm, F. (2001). Dynamics of the vocal imitation process: how a zebra finch learns its song. Science, 291, 2564–2569. doi:10.1126/science.1058522.

    Article  CAS  PubMed  Google Scholar 

  • Tickle, P. G., Ennos, A. R., Lennox, L. E., Perry, S. F., & Codd, J. R. (2007). Functional significance of the uncinate processes in birds. Journal of Experimental Biology, 210, 3955–3961. doi:10.1242/jeb.008953.

    Article  PubMed  Google Scholar 

  • Tickle, P. G., Norell, M. A., & Codd, J. R. (2012). Ventilatory mechanics from maniraptoran theropods to extant birds. Journal of Evolutionary Biology, 25, 740–747. doi:10.1111/j.1420-9101.2012.02465.x.

    Article  CAS  PubMed  Google Scholar 

  • Ting, L. H., & McKay, J. L. (2007). Neuromechanics of muscle synergies for posture and movement. Current Opinion in Neurobiology, 17, 622–628. doi:10.1016/j.conb.2008.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titze, I. R. (1988). The physics of small-amplitude oscillation of the vocal folds. The Journal of the Acoustical Society of America, 83, 1536–1552.

    Article  CAS  PubMed  Google Scholar 

  • Titze, I. R. (2000). Principles of voice production. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Titze, I. R., Finnegan, E. M., Laukkanen, A. M., Fuja, M., & Hoffman, H. (2008). Laryngeal muscle activity in giggle: A damped oscillation model. Journal of Voice, 22, 644–648. doi:10.1016/j.jvoice.2007.01.008.

    Article  PubMed  Google Scholar 

  • Titze, I. R., & Story, B. H. (2002). Rules for controlling low-dimensional vocal fold models with muscle activation. The Journal of the Acoustical Society of America, 112, 1064–1076.

    Article  PubMed  Google Scholar 

  • Tresch, M. C., & Jarc, A. (2009). The case for and against muscle synergies. Current Opinion in Neurobiology, 19, 601–607. doi:10.1016/j.conb.2009.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tytell, E. D., Holmes, P., & Cohen, A. H. (2011). Spikes alone do not behavior make: Why neuroscience needs biomechanics. Current Opinion in Neurobiology, 21, 816–822. doi:10.1016/j.conb.2011.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, A. M., Meyers, R. A., Cooper, B. G., & Goller, F. (2010). Fibre architecture and song activation rates of syringeal muscles are not lateralized in the European starling. Journal of Experimental Biology, 213, 1069–1078. doi:10.1242/jeb.038885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Berg, J. (1958). Myoelastic-aerodynamic theory of voice production. Journal of Speech and Hearing Research, 1, 227–244. doi:10.1044/jshr.0103.227.

    Article  Google Scholar 

  • Vicario, D. S. (1991). Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus robustus archistriatalis. Journal of Comparative Neurology, 309, 486–494. doi:10.1002/cne.903090405.

    Article  CAS  PubMed  Google Scholar 

  • Vicario, D. S., & Nottebohm, F. (1988). Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus. Journal of Comparative Neurolog, 271, 346–354. doi:10.1002/cne.902710305.

    Article  CAS  Google Scholar 

  • Vignal, C., Mathevon, N., & Mottin, S. (2004). Audience drives male songbird response to partner’s voice. Nature, 430, 448–451. doi:10.1038/nature02645.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, J. (1990). Structural biomaterials. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wade, J., & Buhlman, L. (2000). Lateralization and effects of adult androgen in a sexually dimorphic neuromuscular system controlling song in zebra finches. Journal of Comparative Neurology, 426, 154–164.

    Article  CAS  PubMed  Google Scholar 

  • Wakeling, J. M., Lee, S. S., Arnold, A. S., de Boef Miara, M., & Biewener, A. A. (2012). A muscle’s force depends on the recruitment patterns of its fibers. Annals of Biomedical Engineering, 40, 1708–1720. doi:10.1007/s10439-012-0531-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wild, J. M. (1997). Neural pathways for the control of birdsong production. Journal of Neurobiology, 33, 653–670.

    Article  CAS  PubMed  Google Scholar 

  • Wild, J. M. (2004). Functional neuroanatomy of the sensorimotor control of singing. Annals of the New York Academy of Sciences, 1016, 438–62. doi:10.1196/annals.1298.016.

    Article  PubMed  Google Scholar 

  • Wild, J. M., Kubke, M. F., & Mooney, R. (2009). Avian nucleus retroambigualis: Cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata). Journal of Comparative Neurology, 512, 768–783. doi:10.1002/cne.21932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, A. M., McGuigan, M. P., Su, A., & Van Den Bogert, A. J. (2001). Horses damp the spring in their step. Nature, 414, 895–899.

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich, L. (1884). Beiträge zur vergleichenden Anatomie u. Entwickelungsgeschichte des unteren Kehlkopfes der Vögel. Halle, Germany: Druck von E. Blochmann.

    Book  Google Scholar 

  • Zimmer, K. (1935). Beiträge zur Mechanik der atmung bei den vögeln in stand und flug auf grund anatomisch-physiologischer und experimenteller Studien. Stuttgart, Germany: Schweizerbart.

    Google Scholar 

  • Zollinger, S. A., Riede, T., & Suthers, R. A. (2008). Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations. Journal of Experimental Biology, 211, 1978–1991. doi:10.1242/jeb.014092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zweers, G., Bout, R., & Heidweiller, J. (1994). Motor organization of the avian head-neck system. In M. N. O. Davies & P. R. Green (Eds.), Perception and motor control in birds (pp. 201–221). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Zweers, G. A., Van Pelt, H. C., & Beckers, A. (1981). Morphology and mechanics of the larynx of the pigeon (Columba livia L.): A drill-chuck system (Aves). Zoomorphology, 99, 37–69. doi:10.1007/BF00310353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coen P. H. Elemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Düring, D.N., Elemans, C.P.H. (2016). Embodied Motor Control of Avian Vocal Production. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_5

Download citation

Publish with us

Policies and ethics