Skip to main content

Fertility Conditions Associated with Cancer Development

  • Chapter
  • First Online:
Cancer and Fertility

Part of the book series: Current Clinical Urology ((CCU))

  • 653 Accesses

Abstract

Male infertility lies at the intersection of genetic determinants and environmental effects. Although the exact genetic mechanisms of male infertility are still unclear, the associations between male infertility and medical diseases including cancer are clear. The advent of Assisted Reproductive Technology (ART) has allowed men to bypass urologic care to achieve their family planning goals at a time when testicular germ cell tumors (TGCT) in industrialized nations are increasing and semen quality is arguably decreasing. Data suggests that male reproductive failure may be a harbinger of future urologic diseases, including testis and prostate cancer, thus emphasizing the importance of dedicated urologic evaluation and care for all male infertility patients.

Advances in epigenetics, the sequencing of the human genome, and maturation of large datasets from countries with socialized medicine are heralding a new era of medicine and research. The sensitivity of germinal epithelium to changes in the external environment combined with the internal metabolic profile make germinal epithelium an excellent avenue for exploring the intersection between infertility and cancers of the male reproductive tract.

This chapter will review male infertility with specific focus on epidemiologic data and biological mechanisms linking male reproductive health and cancer with specific focus on TGCT and prostate cancer (CaP). We will review the possible biologic mechanisms that may underlie this association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker WH. Molecular mechanisms of testosterone action in spermatogenesis. Steroids. 2009;74(7):602–7.

    Article  CAS  PubMed  Google Scholar 

  2. Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36:497–501.

    Article  CAS  PubMed  Google Scholar 

  3. de la Calle VJF, et al. Male infertility risk factors in a French military population. Hum Reprod. 2001;16:481–6.

    Article  Google Scholar 

  4. Honig SC, Lipshultz LI, Jarow J. Significant medical pathology uncovered by a comprehensive male infertility evaluation. Fertil Steril. 1994;62:1028–34.

    CAS  PubMed  Google Scholar 

  5. Ziebe S, Devroey P. Assisted reproductive technologies are an integrated part of national strategies addressing demographic and reproductive challenges. Hum Reprod Update. 2008;14:583–92.

    Article  PubMed  Google Scholar 

  6. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sherins RJ, et al. Intracytoplasmic sperm injection facilitates fertilization even in the most severe forms of male infertility: pregnancy outcome correlates with maternal age and number of eggs available. Fertil Steril. 1995;64:369–75.

    Article  CAS  PubMed  Google Scholar 

  8. Kolettis PN, Sabanegh ES. Significant medical pathology discovered during a male infertility evaluation. J Urol. 2001;166:178–80.

    Article  CAS  PubMed  Google Scholar 

  9. Surveillance Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER 9 Regs Public-Use. (Nov 2004 Sub).

    Google Scholar 

  10. Richiardi L, et al. Testicular cancer incidence in eight northern European countries: secular and recent trends. Cancer Epidemiol Biomarkers Prev. 2004;13:2157–66.

    PubMed  Google Scholar 

  11. Pryor JP, et al. Carcinoma in situ in testicular biopsies from men presenting with infertility. Br J Urol. 1983;55:780–4.

    Article  CAS  PubMed  Google Scholar 

  12. Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12:303–23.

    Article  CAS  PubMed  Google Scholar 

  13. Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.

    Article  CAS  PubMed  Google Scholar 

  14. Petersen PM, et al. Impaired testicular function in patients with carcinoma-in-situ of the testis. J Clin Oncol. 1999;17:173–9.

    CAS  PubMed  Google Scholar 

  15. Dieckmann KP, Pichlmeier U. Clinical epidemiology of testicular germ cell tumors. World J Urol. 2004;22:2–14.

    Article  PubMed  Google Scholar 

  16. Daling JR, et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer. 2009;115:1215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haughey BP, et al. The epidemiology of testicular cancer in upstate New York. Am J Epidemiol. 1989;130:25–36.

    CAS  PubMed  Google Scholar 

  18. Forman D, Moller H. Testicular cancer. Cancer Surv. 1994;19–20:323–41.

    PubMed  Google Scholar 

  19. Gershman ST, Stolley PD. A case-control study of testicular cancer using Connecticut tumour registry data. Int J Epidemiol. 1988;17:738–42.

    Article  CAS  PubMed  Google Scholar 

  20. Moller H, Skakkebaek NE. Occurrence of testicular cancer in subfertile men. A case-control study. Ugeskr Laeger. 1999;161:6490–2.

    CAS  PubMed  Google Scholar 

  21. Kvale R, et al. Interpreting trends in prostate cancer incidence and mortality in the five Nordic countries. J Natl Cancer Inst. 2007;99:1881–7.

    Article  PubMed  Google Scholar 

  22. Moller H, Skakkebaek NE. Risk of testicular cancer in subfertile men: case-control study. BMJ. 1999;318:559–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobsen R, et al. Risk of testicular cancer in men with abnormal semen characteristics: cohort study. BMJ. 2000;321:789–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walsh TJ, Dall’Era MA, Croughan MS, Carroll PR, Turek PJ. Prepubertal orchiopexy for cryptorchidism may be associated with lower risk of testicular cancer. J Urol. 2007;178:1440–6; discussion 1446.

    Article  PubMed  Google Scholar 

  25. Doria-Rose VP, Biggs ML, Weiss NS. Subfertility and the risk of testicular germ cell tumors (United States). Cancer Causes Control. 2005;16:651–6.

    Article  PubMed  Google Scholar 

  26. Raman JD, Nobert CF, Goldstein M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J Urol. 2005;174:1819–22; discussion 1822.

    Article  PubMed  Google Scholar 

  27. Walsh TJ, Croughan MS, Schembri M, Chan JM, Turek PJ. Increased risk of testicular germ cell cancer among infertile men. Arch Intern Med. 2009;169:351–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Richiardi L, Akre O, Montgomery SM, Lambe M, Kvist U, Ekbom A. Fecundity and twinning rates as measures of fertility before diagnosis of germ-cell testicular cancer. J Natl Cancer Inst. 2004;96:145–7.

    Article  PubMed  Google Scholar 

  29. Bostwick DG, et al. Human prostate cancer risk factors. Cancer. 2004;101(10 Suppl):2371–490.

    Article  CAS  PubMed  Google Scholar 

  30. Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361(9360):859–64.

    Article  PubMed  Google Scholar 

  31. Monroe KR, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med. 1995;1(8):827–9.

    Article  CAS  PubMed  Google Scholar 

  32. Stattin P, et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst. 2000;92(23):1910–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng SL, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008;358(9):910–9.

    Article  CAS  PubMed  Google Scholar 

  34. Klein EA, Silverman R. Inflammation, infection, and prostate cancer. Curr Opin Urol. 2008;18(3):315–9.

    Article  PubMed  Google Scholar 

  35. Lu Y, et al. Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses. Prostate. 2012;72(4):376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crowe FL, et al. Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2008;87(5):1405–13.

    CAS  PubMed  Google Scholar 

  37. Allen NE, et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br J Cancer. 2008;98(9):1574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jorgensen KT, et al. Fatherhood status and prostate cancer risk. Cancer. 2008;112(4):919–23.

    Article  PubMed  Google Scholar 

  39. Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology. 2002;13(1):72–9.

    Article  PubMed  Google Scholar 

  40. Giwercman A, et al. Reduced risk of prostate cancer in men who are childless as compared to those who have fathered a child: a population based case-control study. Int J Cancer. 2005;115(6):994–7.

    Article  CAS  PubMed  Google Scholar 

  41. Negri E, et al. Risk of prostate cancer in men who are childless. Int J Cancer. 2006;118(3):786–7. author reply 788.

    Article  CAS  PubMed  Google Scholar 

  42. Harlap S, et al. Late fetal death in offspring and subsequent incidence of prostate cancer in fathers: the Jerusalem Perinatal Study cohort. Prostate. 2007;67(9):989–98.

    Article  CAS  PubMed  Google Scholar 

  43. Wiren SM, Drevin LI, Carlsson SV, Akre O, Holmberg EC, Robinson DE, Garmo HG, Stattin PE. Fatherhood status and risk of prostate caner: nationwide, population-based case-control study. Int J Cancer. 2013;133:937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eisenberg ML, et al. Fatherhood and incident prostate cancer in a prospective US cohort. Int J Epidemiol. 2011;40(2):480–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Le Marchand L, Yoshizawa CN, Kolonel LN. Sex ratio of offspring of patients with prostatic cancer. CMAJ. 1986;135(2):107.

    PubMed  PubMed Central  Google Scholar 

  46. Hill GB, et al. Sex ratio of offspring of patients with prostatic cancer. CMAJ. 1985;133(6):567–71.

    CAS  PubMed  Google Scholar 

  47. Spitz MR, et al. Sex ratio of offspring of patients with prostatic cancer. CMAJ. 1986;134(2):104–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Perinchery G, et al. Deletion of Y-chromosome specific genes in human prostate cancer. J Urol. 2000;163(4):1339–42.

    Article  CAS  PubMed  Google Scholar 

  49. Harlap S, et al. Prostate cancer in fathers with fewer male offspring: the Jerusalem Perinatal Study cohort. J Natl Cancer Inst. 2007;99(1):77–81.

    Article  PubMed  Google Scholar 

  50. Bermejo JL, Sundquist J, Hemminki K. Re: Prostate cancer in fathers with fewer male offspring: the Jerusalem Perinatal Study cohort. J Natl Cancer Inst. 2007;99(11):901–2; author reply 903–4.

    Article  PubMed  Google Scholar 

  51. Walsh TJ, et al. Increased risk of high-grade prostate cancer among infertile men. Cancer. 2010;116(9):2140–7.

    PubMed  PubMed Central  Google Scholar 

  52. Byar DP, Mostofi FK. Cancer of the prostate in men less than 50 years old: an analysis of 51 cases. J Urol. 1969;102(6):726–33.

    CAS  PubMed  Google Scholar 

  53. Breslow N, et al. Latent carcinoma of prostate at autopsy in seven areas. The International Agency for Research on Cancer, Lyons, France. Int J Cancer. 1977;20(5):680–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rullis I, Shaeffer JA, Lilien OM. Incidence of prostatic carcinoma in the elderly. Urology. 1975;6(3):295–7.

    Article  CAS  PubMed  Google Scholar 

  55. Krausz C, Forti G, Sassone-Corsi P, Carrell DT. Florence-Utah symposium on the genetics of male infertility. Int J Androl. 2008;31:373.

    Article  CAS  PubMed  Google Scholar 

  56. Gonsalves J, et al. Defective recombination in infertile men. Hum Mol Genet. 2004;13:2875–83.

    Article  CAS  PubMed  Google Scholar 

  57. Nathanson KL, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet. 2005;77(6):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bianchi NO, Richard SM, Pavicic W. Y chromosome instability in testicular cancer. Mutat Res. 2006;612:172–88.

    Article  CAS  PubMed  Google Scholar 

  59. Maduro MR, et al. Microsatellite instability and defects in mismatch repair proteins: a new aetiology for Sertoli cell-only syndrome. Mol Hum Reprod. 2003;9:61–8.

    Article  CAS  PubMed  Google Scholar 

  60. Ferlin A, et al. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14:734–45.

    Article  CAS  PubMed  Google Scholar 

  61. Krausz C, Forti G, McElreavey K. The Y chromosome and male fertility and infertility. Int J Androl. 2003;26:70–5.

    Article  PubMed  Google Scholar 

  62. Skakkebaek NE, et al. Is human fecundity declining? Int J Androl. 2006;29:2–11.

    Article  PubMed  Google Scholar 

  63. Skakkebaek NE, et al. Testicular cancer trends as ‘whistle blowers’ of testicular developmental problems in populations. Int J Androl. 2007;30:198–204; discussion 204–195.

    Article  CAS  PubMed  Google Scholar 

  64. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  CAS  PubMed  Google Scholar 

  65. Olesen IA, Sonne SB, Hoei-Hansen CE, Rajpert-DeMeyts E, Skakkebaek NE. Environment, testicular dysgenesis and carcinoma in situ testis. Best Pract Res Clin Endocrinol Metab. 2007;21:462–78.

    Article  CAS  PubMed  Google Scholar 

  66. Boisen KA, Main KM, Rajpert-De Meyts E, Skakkebaek NE. Are male reproductive disorders a common entity? The testicular dysgenesis syndrome. Ann N Y Acad Sci. 2001;948:90–9.

    Article  CAS  PubMed  Google Scholar 

  67. Virtanen HE, Rajpert-De Meyts E, Main KM, Skakkebaek NE, Toppari J. Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol Appl Pharmacol. 2005;207:501–5.

    Article  CAS  PubMed  Google Scholar 

  68. Masters JR, Koberle B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer. 2003;3:517–25.

    Article  CAS  PubMed  Google Scholar 

  69. Spierings DC, de Vries EG, Vellenga E, de Jong S. The attractive Achilles heel of germ cell tumours: an inherent sensitivity to apoptosis-inducing stimuli. J Pathol. 2003;200:137–48.

    Article  CAS  PubMed  Google Scholar 

  70. Einhorn EH. Testicular cancer: an oncological success story. Clin Cancer Res. 1997;3:2630–2.

    CAS  PubMed  Google Scholar 

  71. Adami HO, et al. Testicular cancer in nine northern European countries. Int J Cancer. 1994;59:33–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur J Cancer. 2002;38:2428–34.

    Article  CAS  PubMed  Google Scholar 

  73. Fisher JS, Macpherson S, Marchetti N, Sharpe RM. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod. 2003;18:1383–94.

    Article  CAS  PubMed  Google Scholar 

  74. Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW. Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci. 2001;64:233–42.

    Article  CAS  PubMed  Google Scholar 

  75. Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene. 2002;21:3988–99.

    Article  CAS  PubMed  Google Scholar 

  76. Cox DN, et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998;12:3715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hitchins M, et al. MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology. 2005;129:1392–9.

    Article  CAS  PubMed  Google Scholar 

  78. Baker SM, et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 1995;82:309–19.

    Article  CAS  PubMed  Google Scholar 

  79. Nudell D, Castillo M, Turek PJ, Pera RR. Increased frequency of mutations in DNA from infertile men with meiotic arrest. Hum Reprod. 2000;15:1289–94.

    Article  CAS  PubMed  Google Scholar 

  80. Lynn A, et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science. 2002;296:2222–5.

    Article  CAS  PubMed  Google Scholar 

  81. Baker SM, et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996;13:336–42.

    Article  CAS  PubMed  Google Scholar 

  82. Moens PB, et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci. 2002;115:1611–22.

    CAS  PubMed  Google Scholar 

  83. Judis L, Chan ER, Schwartz S, Seftel A, Hassold T. Meiosis I arrest and azoospermia in an infertile male explained by failure of formation of a component of the synaptonemal complex. Fertil Steril. 2004;81:205–9.

    Article  PubMed  Google Scholar 

  84. Marcon E, Moens P. MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics. 2003;165:2283–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei K, et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 2003;17:603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun F, et al. Immunofluorescent synaptonemal complex analysis in azoospermic men. Cytogenet Genome Res. 2005;111:366–70.

    Article  CAS  PubMed  Google Scholar 

  87. Krausz C, Forti G. The Y chromosome and its fragility. Int J Androl. 2008;31:374–5.

    Article  CAS  PubMed  Google Scholar 

  88. Krausz C, Quintana-Murci L, Forti G. Y chromosome polymorphisms in medicine. Ann Med. 2004;36:573–83.

    Article  CAS  PubMed  Google Scholar 

  89. Giwercman A, Dezuyei N, Lundwall A, Bjartell A, Giwercman YL. Testicular cancer and molecular genetics. Andrologia. 2005;37:224–5.

    Article  CAS  PubMed  Google Scholar 

  90. Mosaad YM, et al. CAG repeat length in androgen receptor gene and male infertility in Egyptian patients. Andrologia. 2012;44(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez-Gonzalez G, et al. Short alleles of both GGN and CAG repeats at the exon-1 of the androgen receptor gene are associated to increased PSA staining and a higher Gleason score in human prostatic cancer. J Steroid Biochem Mol Biol. 2009;113(1–2):85–91.

    Article  CAS  PubMed  Google Scholar 

  92. Silva Neto B, et al. Polymorphic CAG and GGC repeat lengths in the androgen receptor gene and prostate cancer risk: analysis of a Brazilian population. Cancer Invest. 2008;26(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  93. Das K, et al. Shorter CAG repeats in androgen receptor and non-GG genotypes in prostate-specific antigen loci are associated with decreased risk of benign prostatic hyperplasia and prostate cancer. Cancer Lett. 2008;268(2):340–7.

    Article  CAS  PubMed  Google Scholar 

  94. Mittal RD, Mishra D, Mandhani AK. Role of an androgen receptor gene polymorphism in development of hormone refractory prostate cancer in Indian population. Asian Pac J Cancer Prev. 2007;8(2):275–8.

    PubMed  Google Scholar 

  95. Giwercman C, et al. Polymorphisms in genes regulating androgen activity among prostate cancer low-risk Inuit men and high-risk Scandinavians. Int J Androl. 2008;31(1):25–30.

    CAS  PubMed  Google Scholar 

  96. Ronquist G, Nilsson BO. The Janus-faced nature of prostasomes: their pluripotency favours the normal reproductive process and malignant prostate growth. Prostate Cancer Prostatic Dis. 2004;7(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  97. Burden HP, et al. Prostasomes—their effects on human male reproduction and fertility. Hum Reprod Update. 2006;12(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  98. Norris AM, et al. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer. Prostate. 2007;67(2):214–25.

    Article  CAS  PubMed  Google Scholar 

  99. Norris AM, et al. The elevated expression of a mismatch repair protein is a predictor for biochemical recurrence after radical prostatectomy. Cancer Epidemiol Biomarkers Prev. 2009;18(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McMullin RP, Mutton LN, Bieberich CJ. Hoxb13 regulatory elements mediate transgene expression during prostate organogenesis and carcinogenesis. Dev Dyn. 2009;238(3):664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vogt PH, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5(7):933–43.

    Article  CAS  PubMed  Google Scholar 

  102. Reijo R, et al. Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet. 1996;347(9011):1290–3.

    Article  CAS  PubMed  Google Scholar 

  103. Kostiner DR, Turek PJ, Reijo RA. Male infertility: analysis of the markers and genes on the human Y chromosome. Hum Reprod. 1998;13(11):3032–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kleiman SE, et al. The prognostic role of the extent of Y microdeletion on spermatogenesis and maturity of Sertoli cells. Hum Reprod. 2001;16(3):399–402.

    Article  CAS  PubMed  Google Scholar 

  105. Lau YF, Zhang J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol Carcinog. 2000;27(4):308–21.

    Article  CAS  PubMed  Google Scholar 

  106. Krausz C, et al. The clinical significance of the POLG gene polymorphism in male infertility. J Clin Endocrinol Metab. 2004;89(9):4292–7.

    Article  CAS  PubMed  Google Scholar 

  107. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727(3):62–71.

    Article  CAS  PubMed  Google Scholar 

  108. Jeronimo C, et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol. 2011;60(4):753–66.

    Article  CAS  PubMed  Google Scholar 

  109. Skinner MK, Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics. Epigenomics. 2009;1(1):111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Phillips KP, Tanphaichitr N. Human exposure to endocrine disrupters and semen quality. J Toxicol Environ Health B Crit Rev. 2008;11(3–4):188–220.

    Article  CAS  PubMed  Google Scholar 

  111. Prins GS. Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer. 2008;15(3):649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu X, et al. Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults. Environ Health Perspect. 2010;118(1):60–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Ostrowski M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ostrowski, K.A., Walsh, T.J. (2016). Fertility Conditions Associated with Cancer Development. In: Sabanegh, Jr., E. (eds) Cancer and Fertility. Current Clinical Urology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-27711-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27711-0_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-27709-7

  • Online ISBN: 978-3-319-27711-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics