Skip to main content

Crutchfield Information Metric: A Valid Tool for Quality Control of Multiparametric MRI Data?

  • Conference paper
  • First Online:
  • 778 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 574))

Abstract

We propose an information theoretic framework to automatically infer the physical relationship and asses the quality of multiparametric MRI sequences. The method is based on the Crutchfield information metric. This distance measure can be computed solely based on the voxel intensities. In a series of experiments we proof its usefulness. First, we show that given multiparametric MRI data sets it is possible to discover the physical relationship w.r.t. the acquisition parameters of the individual sequences. Next, we demonstrate that this relationship can be employed to perform a quality check of a large (\(N=216\)) data set by identifying faulty components, e.g. due to motion artifacts. Finally, we use a multidirectional diffusion weighted data set to confirm that the approach is fine grained enough to even detect small differences of diffusion vectors as well as the direction of the phase encoding of an echo planar imaging (EPI) sequence. Future work aims at transferring the preliminary results of these promising experiments into clinical routine and at standardizing MRI protocols for large scale clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 3D Slicer v4.3. http://www.slicer.org

  2. Cornfeld, D., Sprenkle, P.: Multiparametric MRI: standardizations needed. Oncol. (Williston Park) 27(4), 277–280 (2013)

    Google Scholar 

  3. Crutchfield, J.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in Physical Systems. Woodward Conference. Springer, New York (1990)

    Google Scholar 

  4. Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Gunther, M., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain fmri and fast diffusion imaging. PLoS One 5(12), e15710 (2010)

    Article  Google Scholar 

  5. FMRIB’s software Library FSL v5.0. http://fsl.fmrib.ox.ac.uk

  6. Graphviz. http://www.graphviz.org

  7. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 11–15. Pasadena, CA USA, August 2008

    Google Scholar 

  8. Johnson, H., Harris, G., Williams, K.: BRAINSFit: mutual information registrations of whole-brain 3D images, using the insight toolkit. The Insight J., October 2007. http://hdl.handle.net/1926/1291

  9. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999)

    Article  Google Scholar 

  10. Kaplan, F., Hafner, V.V.: Information-theoretic framework for unsupervised activity classification. Adv. Robot. 20(10), 1087–1103 (2006). http://www.tandfonline.com/doi/abs/10.1163/156855306778522514

    Article  Google Scholar 

  11. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med. Internet Res. 15(11), e245 (2013)

    Article  Google Scholar 

  12. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soci. 7(1), 48–50 (1956). http://www.jstor.org/stable/2033241

    Article  MATH  MathSciNet  Google Scholar 

  13. Kullback, S.: Information Theory and Statistics. Dover, New York (1968)

    Google Scholar 

  14. Olsson, L.A., Nehaniv, C.L., Polani, D.: From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connect. Sci. 18(2), 121–144 (2006). http://www.tandfonline.com/doi/abs/10.1080/09540090600768542

    Article  Google Scholar 

  15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Python v2.7.6. http://www.python.org

  17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Sci. 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  18. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949)

    MATH  Google Scholar 

  19. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  20. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Sci. 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  21. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2(12), 474–484 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the anonymous reviewer who suggested the experiment with multiple diffusion directions. This work was supported by a postdoctoral fellowship from the Medical Faculty of the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kleesiek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kleesiek, J., Biller, A., Bartsch, A.J., Ueltzhöffer, K. (2015). Crutchfield Information Metric: A Valid Tool for Quality Control of Multiparametric MRI Data?. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics