Skip to main content

Application of Multi-Robot Systems to Disaster-Relief Scenarios with Limited Communication

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 113))

Abstract

In this systems description paper, we present a multi-robot solution for intelligence-gathering tasks in disaster-relief scenarios where communication quality is uncertain. First, we propose a formal problem statement in the context of operations research. The hardware configuration of two heterogeneous robotic platforms capable of performing experiments in a relevant field environment and a suite of autonomy-enabled behaviors that support operation in a communication-limited setting are described. We also highlight a custom user interface designed specifically for task allocation amongst a group of robots towards completing a central mission. Finally, we provide an experimental design and extensive, preliminary results for studying the effectiveness of our system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ASUS Xtion Pro Live. http://www.asus.com/us/Multimedia/Xtion_PRO_LIVE/

  2. Better Approach to Mobile Ad-Hoc Networking. http://www.open-mesh.org

  3. Clearpath Robotics Husky. http://www.clearpathrobotics.com/husky/

  4. Garmin GPS. https://buy.garmin.com/en-US/US/oem/sensors-and-boards/gps-18x-oem/prod27594.html

  5. Hokuyo LiDAR. http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/utm-30lx-ew/

  6. MicroSrain IMU. http://www.microstrain.com/inertial/3DM-GX3-25

  7. OpenWRT. https://openwrt.org/

  8. PackBot. http://www.irobot.com/For-Defense-and-Security/Robots/510-PackBot.aspx

  9. Prosilica Camera. http://www.alliedvisiontec.com/us/products/cameras/gigabit-ethernet/prosilica-gt/gt2750.html

  10. RouterStation. http://wiki.ubnt.com/RouterStation

  11. Ubiquiti Networks. http://www.ubnt.com

  12. Velodyne LiDAR. http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx

  13. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orienteering and profitable tour problems. J. Oper. Res. Soc. 60(6):831–842 (2008)

    Google Scholar 

  14. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.A.: Towards heterogeneous robot teams for disaster mitigation: results and performance metrics from robocup rescue. J. Field Robot. 24(11–12), 943–967 (2007)

    Google Scholar 

  15. Butzke, J., Daniilidis, K., Kushleyev, A., Lee, D.D., Likhachev, M., Phillips, C., Phillips, M.: The University of Pennsylvania MAGIC 2010 multi-robot unmanned vehicle system. J. Field Robot. 29(5), 745–761 (2012)

    Article  Google Scholar 

  16. Campbell, A.M., Gendreau, M., Thomas, B.W.: The orienteering problem with stochastic travel and service times. Ann. Oper. Res. 186(1), 61–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dellaert, F., Kaess, M.: Square Root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Robot. Res. 25(12), 1181–1203 (2006)

    Article  MATH  Google Scholar 

  18. Dellaert, F.: Factor graphs and GTSAM: a hands-on introduction. Technical Report, September, GT RIM (2012)

    Google Scholar 

  19. Guizzo, E.: Fukushima robot operator writes tell-all blog. In: IEEE Spectrum. http://spectrum.ieee.org/automaton/robotics/industrial-robots/fukushima-robot-operator-diaries

  20. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

    Article  Google Scholar 

  21. Johnson, S.G.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt

  22. Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems (1991)

    Google Scholar 

  23. Likhachev, M.: Search-Based Planning Library. https://github.com/sbpl/sbpl

  24. Murphy, R.R.: Disaster Robotics. MIT Press (2014)

    Google Scholar 

  25. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., Kawatsuma, S.: Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 30(1), 44–63 (2013)

    Article  Google Scholar 

  26. Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J., Marinier, B.: Progress toward multi-robot reconnaissance and the MAGIC 2010 competition. J. Field Robot. 29(5), 762–792 (2012)

    Google Scholar 

  27. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: International Conference on Robotics and Automation, Open-Source Software workshop (2009)

    Google Scholar 

  28. Rogers, J.G., Fink, J.R., Stump, E.A.: Mapping with a ground robot in GPS denied and degraded environments. In: American Control Conference (2014)

    Google Scholar 

  29. Segal, A.V., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems (2009)

    Google Scholar 

  30. Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots using coverage maps. In: IJCAI, pp. 1127–1134 (2003)

    Google Scholar 

  31. Strickland, E.: 24 hours at Fukushima. IEEE Spectr. 48(11), 35–42 (2011)

    Article  Google Scholar 

  32. Taylan, I., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic profits. IEE Trans. 40(4), 406–421 (2008)

    Google Scholar 

  33. Thrun, S.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)

    Article  Google Scholar 

  34. Twigg, J.N., Fink, J., Yu, P.L., Sadler, B.M.: Efficient base station connectivity area discovery. Int. J. Robot. Res. (2013)

    Google Scholar 

  35. U.S. Department of Defense: Foreign humanitarian assistance. Joint Publication, 3–29 Jan 2014

    Google Scholar 

  36. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gregory, J. et al. (2016). Application of Multi-Robot Systems to Disaster-Relief Scenarios with Limited Communication. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27702-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27700-4

  • Online ISBN: 978-3-319-27702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics