Skip to main content

Successive Phases of the Metabolic Response to Stress

  • Chapter
  • First Online:
The Stress Response of Critical Illness: Metabolic and Hormonal Aspects

Abstract

The metabolic response to stress have been selected as an adaptive response to survive critical illness. Several mechanisms well preserved over the evolution, including the stimulation of the sympathetic nervous system, the release of pituitary hormones, a peripheral resistance to the effects of these and other anabolic factors are triggered to increase the provision of energy substrates to the vital tissues. After an acute insult, alternative substrates are used as a result of the loss of control of energy substrate utilization. The clinical consequences of the metabolic response to stress include sequential changes in energy expenditure, stress hyperglycemia, changes in body composition, psychological and behavioral problems. The loss of muscle proteins and function is a major long-term consequence of stress metabolism. Specific therapeutic interventions, including hormone supplementation, enhanced protein intake and early mobilization are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preiser JC, Ichai C, Orban JC, Groeneveld ABJ (2014) Metabolic response to the stress of critical illness. Br J Anaesth 113:945–954

    Article  PubMed  Google Scholar 

  2. Van den Berghe G, de Zegher F, Bouillon R (1998) Clinical review 95: acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 83:1827–1834

    PubMed  Google Scholar 

  3. Hamill RW, Woolf PD, McDonald JV, Lee LA, Kelly M (1987) Catecholamines predict outcome in traumatic brain injury. Ann Neurol 21:438–443

    Article  CAS  PubMed  Google Scholar 

  4. Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, Vanwijngaerden YM, Spriet I, Wouters PJ, Vander Perre S, Langouche L, Vanhorebeek I, Walker BR, Van den Berghe G (2013) Reduced cortisol metabolism during critical illness. N Engl J Med 368:1477–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koch A, Gressner OA, Sanson E, Tacke F, Trautwein C (2009) Serum resistin levels in critically ill patients are associated with inflammation, organ dysfunction and metabolism and may predict survival of non-septic patients. Crit Care 13:R95

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marques MB, Langouche L (2013) Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit Care Med 41:317–325

    Article  PubMed  Google Scholar 

  7. Hillenbrand A, Weiss M, Knippschild U, Wolf AM, Huber-Lang M (2012) Sepsis-induced adipokine change with regard to insulin resistance. Int J Inflam 2012:972368

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fantuzzi G (2009) Adiponectin and inflammation. Am J Physiol Endocrinol Metab 296(2), E397

    Article  CAS  PubMed  Google Scholar 

  9. Deane A, Chapman MJ, Fraser RJL, Horowitz M (2010) Bench-to-bedside review: the gut as an endocrine organ in the critically ill. Crit Care 14:228

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nematy M, O’Flynn JE, Wandrag L, Brynes AE, Brett SJ, Patterson M, Ghatei MA, Bloom SR, Frost GS (2006) Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study. Crit Care 10:R10

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nematy M, Brynes AE, Hornick PI, Patterson M, Ghatei MA, Bloom SR, Brett SJ, Frost GS (2007) Postprandial ghrelin suppression is exaggerated following major surgery; implications for nutritional recovery. Nutr Metab (Lond) 4:20

    Article  Google Scholar 

  12. Losser MR, Damoisel C, Payen D (2010) Bench-to-bedside review: glucose and stress conditions in the intensive care unit. Crit Care 14:231

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plank LD, Hill GL (2000) Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg 24:630–638

    Article  CAS  PubMed  Google Scholar 

  14. Lena D, Kalfon P, Preiser JC, Ichai C (2011) Glycemic control in the intensive care unit and during the postoperative period. Anesthesiology 114:438–444

    Article  PubMed  Google Scholar 

  15. Biolo G, Grimble G, Preiser JC, Leverve X, Jolliet P, Planas M, Roth E, Wernerman J, Pichard C, European Society of Intensive Care Medicine Working Group on Nutrition and Metabolism (2002) Position paper of the ESICM Working Group on Nutrition and Metabolism. Metabolic basis of nutrition in intensive care unit patients: ten critical questions. Intensive Care Med 28:1512–1520

    Article  PubMed  Google Scholar 

  16. Soeters MR, Soeters PB (2012) The evolutionary benefit of insulin resistance. Clin Nutr 31:1002–1007

    Article  CAS  PubMed  Google Scholar 

  17. Marik PE, Bellomo R (2013) Stress hyperglycemia: an essential survival response! Crit Care 17:305

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dungan KM, Braithwaite SS, Preiser JC (2009) Stress hyperglycaemia. Lancet 373:1798–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singer M, De Santis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated metabolic response to overwhelming systemic inflammation. Lancet 364:545–548

    Article  PubMed  Google Scholar 

  20. Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117

    Article  CAS  PubMed  Google Scholar 

  21. Siegel JH, Cerra FB, Coleman B, Giovannini I, Shetye M, Border JR, McMenamy RH (1979) Physiological and metabolic correlations in human sepsis. Surgery 86:163–193

    CAS  PubMed  Google Scholar 

  22. Wilmore DW (2000) Metabolic response to severe surgical stress: overview. World J Surg 24:705–711

    Article  CAS  PubMed  Google Scholar 

  23. Kyle UG, Jolliet P, Genton L, Meier CA, Mensi N, Graf JD, Chevrolet JC, Pichard C (2005) Clinical evaluation of hormonal stress state in medical ICU patients: a prospective blinded observational study. Intensive Care Med 31:1669–1675

    Article  PubMed  Google Scholar 

  24. Donatelli F, Corbella D, Di Nicola M, Carli F, Lorini L, Fumagalli R, Biolo G (2011) Preoperative insulin resistance and the impact of feeding on postoperative protein balance: a stable isotope study. J Clin Endocrinol Metab 896:E1789–E1797

    Article  Google Scholar 

  25. Hoffer LJ, Bistrian BR (2013) Why critically ill patients are protein depleted. J Parenter Enteral Nutr 37(3):300–309

    Article  Google Scholar 

  26. Magnuson B, Peppard A, Auer Flomenhoft D (2011) Hypocaloric considerations in patients with potentially hypometabolic disease States. Nutr Clin Pract 26:253–260

    Article  PubMed  Google Scholar 

  27. McClave SA, Martindale RG, Kiraly L (2013) The use of indirect calorimetry in the intensive care unit. Curr Opin Clin Nutr Metab Care 16:202–208

    Article  CAS  PubMed  Google Scholar 

  28. Siirala W, Olkkola KT, Noponen T, Vuori A, Aantaa R (2010) Predictive equations over-estimate the resting energy expenditure in amyotrophic lateral sclerosis patients who are dependent on invasive ventilation support. Nutr Metab (Lond) 7:70

    Article  Google Scholar 

  29. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H (1993) Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 21:1012–1019

    Article  CAS  PubMed  Google Scholar 

  30. Uehara M, Plank LD, Hill GL (1999) Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 27:1295–1302

    Article  CAS  PubMed  Google Scholar 

  31. Vincent JL, Preiser JC (2013) When should we add parenteral to enteral nutrition? Lancet 381:354–355

    Article  PubMed  Google Scholar 

  32. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C (2013) Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 381:385–393

    Article  PubMed  Google Scholar 

  33. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365:506–517

    Article  CAS  PubMed  Google Scholar 

  34. Schetz M, Casaer MP, Van den Berghe G (2013) Does artificial nutrition improve outcome of critical illness? Crit Care 17:302

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tappy L, Schwarz JM, Schneiter P, Cayeux C, Revelly JP, Fagerquist CK, Jéquier E, Chioléro R (1998) Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med 26:860–867

    Article  CAS  PubMed  Google Scholar 

  36. Watford M (2005) Is the small intestine a gluconeogenic organ. Nutr Rev 63:356–360

    Article  PubMed  Google Scholar 

  37. Battezzati A, Caumo A, Martino F et al (2004) Nonhepatic glucose production in humans. Am J Physiol Endocrinol Metab 286:E129–E135

    Article  CAS  PubMed  Google Scholar 

  38. Shangraw RE, Jahoor F, Wolfe RR, Lang CH (1996) Pyruvate dehydrogenase inactivity is not responsible for sepsis-induced insulin resistance. Crit Care Med 24:566–574

    Article  CAS  PubMed  Google Scholar 

  39. Burgstad CM, Besanko LK, Deane AM, Nguyen NQ, Saadat-Gilani K, Davidson G, Burt E, Thomas A, Holloway RH, Chapman MJ, Fraser RJ (2013) Sucrose malabsorption and impaired mucosal integrity in enterally fed critically ill patients: a prospective cohort observational study. Crit Care Med 41:1221–1228

    Article  PubMed  Google Scholar 

  40. Orban JC, Leverve X, Ichai C (2011) Lactate: métabolisme et physiopathologie. In: Ichai C, Quintard H, Orban JC (eds) Désordres métaboliques et réanimation : de la,physiopathologie au traitement. Springer, Paris, pp 181–198

    Chapter  Google Scholar 

  41. Van Hall G, Stromstadt M, Rasmussen P et al (2004) Blood lactate is an important source of energy for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  Google Scholar 

  42. Leverve XM (1999) Energy metabolism in critically ill patients: lactate is a major oxidizable substrate. Curr Opin Clin Nutr Metab Care 2:165–169

    Article  CAS  PubMed  Google Scholar 

  43. Ichai C, Armando G, Orban JC, Berthier F, Rami L, Samat-Long C, Grimaud D, Leverve X (2009) Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35(3):471–479

    Article  CAS  PubMed  Google Scholar 

  44. Stanley WC, Recchia FA, Lopasschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  45. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875

    Article  CAS  PubMed  Google Scholar 

  46. Krinsley JS, Egi M, Kiss A, Devendra AN, Schuetz P, Maurer PM, Schultz MJ, van Hooijdonk RT, Kiyoshi M, Mackenzie IM, Annane D, Stow P, Nasraway SA, Holewinski S, Holzinger U, Preiser JC, Vincent JL, Bellomo R (2013) Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care 17:R37

    Article  PubMed  PubMed Central  Google Scholar 

  47. Falciglia M, Freyberg RW, Almenoff PL, D’Alessio DA, Render ML (2009) Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med 37:3001–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herridge MS, Tansey CM, Matte A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304

    Article  CAS  PubMed  Google Scholar 

  49. Hill GL (1992) Jonathan E. Rhoads Lecture. Body composition research: implications for the practice of clinical nutrition. JPEN J Parenter Enteral Nutr 16:197–218

    Article  CAS  PubMed  Google Scholar 

  50. Lecker SH (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  CAS  PubMed  Google Scholar 

  51. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335:1897–1905

    Article  CAS  PubMed  Google Scholar 

  52. Hill NE, Murphy KG, Singer M (2012) Ghrelin, appetite and critical illness. Curr Opin Crit Care 18:199–205

    Article  PubMed  Google Scholar 

  53. Langouche L, Perre SV, Thiessen S, Gunst J, Hermans G, D’Hoore A, Kola B, Korbonits M, Van den Berghe G (2010) Alterations in adipose tissue during critical illness: an adaptive and protective response? Am J Respir Crit Care Med 2010(182):507–516

    Article  Google Scholar 

  54. Broomhead LR, Brett SJ (2002) Clinical review: intensive care follow-up – what has it told us? Crit Care 6:411–417

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ligtenberg JJ, Girbes AR, Beentjes JA, Tulleken JE, Van der Werf TS, Zijlstra JG (2001) Hormones in the critically ill patients: to intervene or not to intervene ? Intensive Care Med 27:1567–1577

    Article  CAS  PubMed  Google Scholar 

  56. Takala J, Ruokonen E, Webster NR et al (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341:785–792

    Article  CAS  PubMed  Google Scholar 

  57. Ruokonen E, Takala J (2002) Dangers of growth hormone therapy in critically ill patients. Curr Opin Clin Nutr Metab Care 5:199–209

    Article  CAS  PubMed  Google Scholar 

  58. Voerman HJ, Strack van Schijndel RJM, Groeneveld ABJ, de Boer H, Nauta JJP, van der Veen EA, Thijs LG (1992) Effects of recombinant human growth hormone in patients with severe sepsis. Ann Surg 216:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schulman RC, Mechanick JI (2012) Metabolic and nutrition support in the chronic critical illness syndrome. Respir Care 57:958–978

    Article  PubMed  Google Scholar 

  60. Ichai C, Preiser JC, Société Française d’Anesthésie-Réanimation; Société de Réanimation de langue Française; Experts group (2010) International recommendations for glucose control in adult non diabetic critically ill patients. Crit Care 14:R166

    PubMed  PubMed Central  Google Scholar 

  61. Groeneveld ABJ, Beishuizen A, Visser FC (2002) Insulin: a wonder drug in the critically ill? Crit Care 6:102–105

    Article  Google Scholar 

  62. Whyte MB, Jackson NC, Shojaee-Moradie F, Treacher DF, Beale RJ, Jones RH, Umpleby AM (2010) Metabolic effects of intensive insulin therapy in critically ill patients. Am J Physiol Endocrinol Metab 298:E697–E705

    Article  CAS  PubMed  Google Scholar 

  63. Maggio M, Nicolini F, Cattabiani C, Beghi C, Gherli T, Schwartz RS, Valenti G, Ceda GP (2012) Effects of testosterone supplementation on clinical and rehabilitative outcomes in older men undergoing on-pump CABG. Contemp Clin Trials 33:730–738

    Article  CAS  PubMed  Google Scholar 

  64. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, Berger MM, Day AG, for the Canadian Critical Care Trials Group (2013) A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 368:489–497

    Google Scholar 

  65. Kelemen JJ, Cioffie WG, Mason AD, Mozingo DW, McManus WF, Pruitt BA (1996) Effects of ambient temperature on metabolic rate after thermal injury. Ann Surg 223:406–412

    Article  PubMed  PubMed Central  Google Scholar 

  66. De Montmolin E, Aboab J, Mansart A, Annane D (2009) Bench-to-bedside review: ß-adrenergic modulation in sepsis. Crit Care 13:230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Preiser MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Preiser, JC., Ichai, C., Groeneveld, A.B.J. (2016). Successive Phases of the Metabolic Response to Stress. In: Preiser, JC. (eds) The Stress Response of Critical Illness: Metabolic and Hormonal Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-27687-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27687-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27685-4

  • Online ISBN: 978-3-319-27687-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics