Skip to main content

The Stress Response after Traumatic Brain Injury: Metabolic and Hormonal Aspects

  • Chapter
  • First Online:
The Stress Response of Critical Illness: Metabolic and Hormonal Aspects

Abstract

The pathophysiology of TBI can be considered as a dual insult composed of primary and secondary injuries. Growing experimental and clinical evidence suggests that disturbances of cerebral energy metabolism are a key factor in the pathogenesis of secondary cerebral damages. In addition, hormonal dysfunction after TBI, such as adrenal insufficiency, vasopressin, growth hormone, or thyrothropin deficiency, can be associated with poor prognosis. A better understanding of energy metabolism and hormonaldisturbances after TBIis necessary to improve the care management at the early phase of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaloshnja E, Miller T, Langlois JA, Selassie AW (2008) Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 23(6):394–400

    Article  PubMed  Google Scholar 

  2. Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A (2003) Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma 54(2):312–319

    Article  PubMed  Google Scholar 

  3. Hutchinson PJ, Jalloh I, Helmy A et al (2015) Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med 41(9):1517–1528

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22(1):3–41

    Article  PubMed  Google Scholar 

  5. Timofeev I, Carpenter KL, Nortje J et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134(Pt 2):484–494

    Article  PubMed  Google Scholar 

  6. Barros LF, Deitmer JW (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63(1–2):149–159

    Article  CAS  PubMed  Google Scholar 

  7. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90(3):875S–880S

    Article  CAS  PubMed  Google Scholar 

  9. Sala N, Suys T, Zerlauth JB et al (2013) Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab 33(11):1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magnoni S, Tedesco C, Carbonara M et al (2012) Relationship between systemic glucose and cerebral glucose is preserved in patients with severe traumatic brain injury, but glucose delivery to the brain may become limited when oxidative metabolism is impaired: implications for glycemic control. Crit Care Med 40(6):1785–1791

    Article  CAS  PubMed  Google Scholar 

  11. Finfer S, Chittock D, Li Y et al (2015) Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med 41(6):1037–1047

    Article  PubMed  Google Scholar 

  12. Kalfon P, Le Manach Y, Ichai C et al (2015) Severe and multiple hypoglycemic episodes are associated with increased risk of death in ICU patients. Crit Care 19:153

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vespa P, McArthur DL, Stein N et al (2012) Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 40(6):1923–1929

    Article  CAS  PubMed  Google Scholar 

  14. Meierhans R, Bechir M, Ludwig S et al (2010) Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury. Crit Care 14(1):R 13

    Article  Google Scholar 

  15. Valente-Silva P, Lemos C, Kofalvi A, Cunha RA, Jones JG (2015) Ketone bodies effectively compete with glucose for neuronal acetyl-CoA generation in rat hippocampal slices. NMR Biomed 28(9):1111–1116

    Article  CAS  PubMed  Google Scholar 

  16. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744(1):105–111

    Article  CAS  PubMed  Google Scholar 

  17. Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87(6):1381–1390

    Article  CAS  PubMed  Google Scholar 

  18. Gallagher CN, Carpenter KL, Grice P et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132(Pt 10):2839–2849

    Article  PubMed  Google Scholar 

  19. Boumezbeur F, Petersen KF, Cline GW et al (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30(42):13983–13991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sotelo-Hitschfeld T, Fernandez-Moncada I, Barros LF (2012) Acute feedback control of astrocytic glycolysis by lactate. Glia 60(4):674–680

    Article  CAS  PubMed  Google Scholar 

  21. Bouzat P, Sala N, Suys T et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40(3):412–421

    Article  CAS  PubMed  Google Scholar 

  22. Berthet C, Castillo X, Magistretti PJ, Hirt L (2012) New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis 34(5–6):329–335

    Article  CAS  PubMed  Google Scholar 

  23. Ichai C, Armando G, Orban JC et al (2009) Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35(3):471–479

    Article  CAS  PubMed  Google Scholar 

  24. Ichai C, Payen JF, Orban JC et al (2013) Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med 39(8):1413–1422

    Article  CAS  PubMed  Google Scholar 

  25. Kelly DF, Gonzalo IT, Cohan P et al (2000) Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg 93(5):743–752

    Article  CAS  PubMed  Google Scholar 

  26. Schneider HJ, Schneider M, Saller B et al (2006) Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur J Endocrinol 154(2):259–265

    Article  CAS  PubMed  Google Scholar 

  27. Agha A, Sherlock M, Phillips J, Tormey W, Thompson CJ (2005) The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol 152(3):371–377

    Article  CAS  PubMed  Google Scholar 

  28. Cohan P, Wang C, McArthur DL et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33(10):2358–2366

    Article  CAS  PubMed  Google Scholar 

  29. Kokshoorn NE, Smit JW, Nieuwlaat WA et al (2011) Low prevalence of hypopituitarism after traumatic brain injury: a multicenter study. Eur J Endocrinol 165(2):225–231

    Article  CAS  PubMed  Google Scholar 

  30. Powner DJ, Boccalandro C, Alp MS, Vollmer DG (2006) Endocrine failure after traumatic brain injury in adults. Neurocrit Care 5(1):61–70

    Article  PubMed  Google Scholar 

  31. Prigent H, Maxime V, Annane D (2004) Science review: mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit Care 8(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koiv L, Merisalu E, Zilmer K, Tomberg T, Kaasik AE (1997) Changes of sympatho-adrenal and hypothalamo-pituitary-adrenocortical system in patients with head injury. Acta Neurol Scand 96(1):52–58

    Article  CAS  PubMed  Google Scholar 

  33. Bernard F, Outtrim J, Menon DK, Matta BF (2006) Incidence of adrenal insufficiency after severe traumatic brain injury varies according to definition used: clinical implications. Br J Anaesth 96(1):72–76

    Article  CAS  PubMed  Google Scholar 

  34. Cooper MS, Thickett DR, Stewart PM (2013) Reduced cortisol metabolism during critical illness. N Engl J Med 369(5):480

    PubMed  Google Scholar 

  35. Agha A, Phillips J, O’Kelly P, Tormey W, Thompson CJ (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118(12):1416

    Article  PubMed  Google Scholar 

  36. Marik PE (2009) Critical illness-related corticosteroid insufficiency. Chest 135(1):181–193

    Article  PubMed  Google Scholar 

  37. Bondanelli M, De Marinis L, Ambrosio MR et al (2004) Occurrence of pituitary dysfunction following traumatic brain injury. J Neurotrauma 21(6):685–696

    Article  PubMed  Google Scholar 

  38. Llompart-Pou JA, Perez-Barcena J, Raurich JM et al (2007) Effect of barbiturate coma on adrenal response in patients with traumatic brain injury. J Endocrinol Invest 30(5):393–398

    Article  CAS  PubMed  Google Scholar 

  39. Vinclair M, Broux C, Faure P et al (2008) Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med 34(4):714–719

    Article  PubMed  Google Scholar 

  40. Barton RN, Stoner HB, Watson SM (1987) Relationships among plasma cortisol, adrenocorticotrophin, and severity of injury in recently injured patients. J Trauma 27(4):384–392

    Article  CAS  PubMed  Google Scholar 

  41. Alderson P, Roberts I (2000) Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev (2):CD000196

    Google Scholar 

  42. Roberts I, Yates D, Sandercock P et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364(9442):1321–1328

    Article  PubMed  Google Scholar 

  43. Treschan TA, Peters J (2006) The vasopressin system: physiology and clinical strategies. Anesthesiology 105(3):599–612

    Article  CAS  PubMed  Google Scholar 

  44. Boughey JC, Yost MJ, Bynoe RP (2004) Diabetes insipidus in the head-injured patient. Am Surg 70(6):500–503

    PubMed  Google Scholar 

  45. Schrier RW, Gross P, Gheorghiade M et al (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355(20):2099–2112

    Article  CAS  PubMed  Google Scholar 

  46. Spasovski G, Vanholder R, Allolio B et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med 40(3):320–331

    Article  PubMed  Google Scholar 

  47. Bushnik T, Englander J, Katznelson L (2007) Fatigue after TBI: association with neuroendocrine abnormalities. Brain Inj 21(6):559–566

    Article  PubMed  Google Scholar 

  48. Devesa J, Reimunde P, Devesa P, Barbera M, Arce V (2013) Growth hormone (GH) and brain trauma. Horm Behav 63(2):331–344

    Article  CAS  PubMed  Google Scholar 

  49. Chourdakis M, Kraus MM, Tzellos T et al (2012) Effect of early compared with delayed enteral nutrition on endocrine function in patients with traumatic brain injury: an open-labeled randomized trial. JPEN J Parenter Enteral Nutr 36(1):108–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Payen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quintard, H., Ichai, C., Payen, JF. (2016). The Stress Response after Traumatic Brain Injury: Metabolic and Hormonal Aspects. In: Preiser, JC. (eds) The Stress Response of Critical Illness: Metabolic and Hormonal Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-27687-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27687-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27685-4

  • Online ISBN: 978-3-319-27687-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics