Detection of Abrupt Changes in Spatial Relationships in Video Sequences

  • Abdalbassir Abou-ElailahEmail author
  • Valerie Gouet-Brunet
  • Isabelle Bloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9493)


Detecting unusual events in video sequences is very challenging due to cluttered background, the difficulties of accurate extraction and tracking of moving objects, illumination change, etc. In this work, we focus on detecting strong changes in spatial relationships between moving objects in video sequences, with a limited knowledge of the objects. In this approach, the spatial relationships between two objects of interest are modeled using angle and distance histograms as examples. To evaluate the evolution of the spatial relationships during time, the distances between two angle or distance histograms at two different instants in time are estimated. In addition, a combination approach is proposed to combine the evolution of directional (angle) and metric (distance) relationships. Studying the evolution of the spatial relationships during time allows us to detect the ruptures in such spatial relationships. This study can constitute a promising step toward event detection in video sequences, with few a priori models on the objects.


Spatial relationships Angle histogram Distances Fuzzy object representation Detection of ruptures Fusion 



This research is part of French ANR project DESCRIBE “Online event detection in video sequences using structural and Bayesian approaches”.


  1. 1.
    Abou-Elailah, A., Gouet-Brunet, V., Bloch, I.: Detection of ruptures in spatial relationships in video sequences. In: International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 110–120 (2015)Google Scholar
  2. 2.
    Advisor. Advisor Project (2000).
  3. 3.
  4. 4.
    Beware. Beware Project (2007).
  5. 5.
  6. 6.
    Carroll, S.R., Carroll, D.J.: Statistics made simple for school leaders: data-driven decision making. R&L Education (2002)Google Scholar
  7. 7.
    Comanicu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  8. 8.
    Cong, Y., Yuan, J., Liu, J.: Abnormal event detection in crowded scenes using sparse representation. Pattern Recogn. 46(7), 1851–1864 (2013)CrossRefGoogle Scholar
  9. 9.
    Cong, Y., Yuan, J., Tang, Y.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013)CrossRefGoogle Scholar
  10. 10.
    Eddy, W.: Convex hull peeling. In: COMPSTAT, pp. 42–47 (1982)Google Scholar
  11. 11.
  12. 12.
    Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Hafner, J., Sawhney, H., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 729–736 (1995)CrossRefGoogle Scholar
  14. 14.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  15. 15.
    Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  16. 16.
    Hu, X., Hu, S., Zhang, X., Zhang, H., Luo, L.: Anomaly detection based on local nearest neighbor distance descriptor in crowded scenes. The Sci. World J. 2014, 12 pages (2014)Google Scholar
  17. 17.
    Hugg, J., Rafalin, E., Seyboth, K., Souvaine, D.: An experimental study of old and new depth measures. In: Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 51–64 (2006)Google Scholar
  18. 18.
  19. 19.
    Jiang, F., Wu, Y., Katsaggelos, A.K.: Detecting contextual anomalies of crowd motion in surveillance video. In: 16th IEEE International Conference on Image Processing, pp. 1117–1120 (2009)Google Scholar
  20. 20.
    Liu, R.: On a notion of data depth based on random simplices. The Ann. Stat. 18(1), 405–414 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Loménie, N., Stamon, G.: Morphological mesh filtering and \(\alpha \)-objects. Pattern Recogn. Lett. 29(10), 1571–1579 (2008)CrossRefGoogle Scholar
  22. 22.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  23. 23.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009)Google Scholar
  24. 24.
    Miyajima, K., Ralescu, A.: Spatial organization in 2D images. In: Third IEEE Conference on Fuzzy Systems, pp. 100–105 (1994)Google Scholar
  25. 25.
    Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 749–762. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008)CrossRefGoogle Scholar
  29. 29.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  30. 30.
    Saleemi, I., Shafique, K., Shah, M.: Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1472–1485 (2009)CrossRefGoogle Scholar
  31. 31.
    Tissainayagam, P., Suter, D.: Object tracking in image sequences using point features. Pattern Recogn. 38(1), 105–113 (2005)CrossRefGoogle Scholar
  32. 32.
    Tran, D., Yuan, J., Forsyth, D.: Video event detection: From subvolume localization to spatio-temporal path search. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 404–416 (2014)CrossRefGoogle Scholar
  33. 33.
    Tukey, J.W.: Mathematics and the picturing of data. In: International Congress of Mathematicians, vol. 2, pp. 523–531 (1975)Google Scholar
  34. 34.
    Vardi, Y., Zhang, C.-H.: The multivariate l1-median and associated data depth. Nat. Acad. Sci. 97(4), 1423–1426 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Visam. Visam Project (1997).
  36. 36.
    Zhou, H., Yuan, Y., Shi, C.: Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 113(3), 345–352 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdalbassir Abou-Elailah
    • 1
    • 2
    Email author
  • Valerie Gouet-Brunet
    • 2
  • Isabelle Bloch
    • 1
  1. 1.LTCI, CNRS, Télécom ParisTech, Université Paris-SaclayParisFrance
  2. 2.Université Paris-Est, IGN, SRIG, MATISSaint MandéFrance

Personalised recommendations