Modification of Polyp Size and Shape from Two Endoscope Images Using RBF Neural Network

  • Yuji IwahoriEmail author
  • Seiya Tsuda
  • Robert J. Woodham
  • M. K. Bhuyan
  • Kunio Kasugai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9493)


In the medical imaging applications, endoscope image is used to observe the human body. The VBW (Vogel-Breuß-Weickert) model is proposed as a method to recover 3-D shape under point light source illumination and perspective projection. However, the VBW model recovers relative, not absolute, shape. Here, shape modification is introduced to recover the exact shape. Modification is applied to the output of the VBW model. First, a local brightest point is used to estimate the reflectance parameter from two images obtained with movement of the endoscope camera in depth. A Lambertian sphere image is generated using the estimated reflectance parameter and VBW model is applied for a sphere. Then Radial Basis Function Neural Network (RBF-NN) learning is applied. The NN implements the shape modification. NN input is the gradient parameters produced by the VBW model for the generated sphere. NN output is the true gradient parameters for the true values of the generated sphere. Here, regression analysis is introduced in comparison with the performance by NN. Depth can then be recovered using the modified gradient parameters. Performance of shape modification by NN and regression analysis was evaluated via computer simulation and real experiment. The result suggests that NN gives better performance than the regression analysis to improve the absolute size and shape of polyp.


Endoscope image VBW model RBF-NN Regression analysis Shape modification Reflection factor 



Iwahori’s research is supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) (26330210) and Chubu University Grant. Woodham’s research is supported by the Natural Sciences and Engineering Research Council (NSERC). The authors would like to thank Kodai Inaba for his experimental help and the related member for useful discussions in this paper.


  1. 1.
    Nakatani, H., Abe, K., Miyakawa, A., Terakawa, S.: Three-dimensional measuremen endoscope system with virtual rulers. J. Biomed. Opt. 12(5), 051803 (2007)CrossRefGoogle Scholar
  2. 2.
    Mourgues, F., Devernay, F., Coste-Maniere, E.: 3D reconstruction of the operating field forimage overlay in 3D-endoscopic surgery. In: Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), pp. 191–192 (2001)Google Scholar
  3. 3.
    Thormaehlen, T., Broszio, H., Meier, P.N.: Three-dimensional endoscopy. In: Falk Symposium, pp. 199–212 (2001)Google Scholar
  4. 4.
    Horn, B.K.P.: Obtaining Shape from Shading Information. MIT Press, Cambridge (1989)Google Scholar
  5. 5.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. U.S.A. (PNAS U.S.) 93(4), 1591–1593 (1996)Google Scholar
  6. 6.
    Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imaging Vis. (JMIV) 14(3), 237–244 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yuen, S.Y., Tsui, Y.Y., Chow, C.K.: A fast marching formulation of perspective shape from shading under frontal illumination. Pattern Recogn. Lett. 28(7), 806–824 (2007)CrossRefGoogle Scholar
  8. 8.
    Iwahori, Y., Iwai, K., Woodham, R.J., Kawanaka, H., Fukui, S., Kasugai, K.: Extending fast marching method un-der point light source illumination and perspective projection. In: ICPR 2010, pp. 1650–1653 (2010)Google Scholar
  9. 9.
    Ding, Y., Iwahori, Y., Nakamura, T., He, L., Woodham, R.J., Itoh, H.: Shape recovery of color textured object using fast marching method via self-caribration. In: EUVIP 2010, pp. 92–96 (2010)Google Scholar
  10. 10.
    Neog, D.R., Iwahori,Y., Bhuyan, M.K., Woodham, R.J., Kasugai, K.: Shape from an endoscope image using extended fast marching method. In: Proceedings of IICAI 2011, pp. 1006–1015 (2011)Google Scholar
  11. 11.
    Iwahori, Y., Shibata, K., Kawanaka, H., Funahashi, K., Woodham, R.J., Adachi, Y.: Shape from SEM image using fast marching method and intensity modification by neural network. In: Tweedale, J.W., Jain, L.C. (eds.) Recent Advances in Knowledge-based Paradigms and Applications. AISC, vol. 234, pp. 73–86. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Ding, Y., Iwahori, Y., Nakamura, T., Woodham, R.J., He, L., Itoh, H.: Self-calibration and image rendering Using RBF neural network. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part II. LNCS, vol. 5712, pp. 705–712. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Iwahori, Y., Sugie, H., Ishii, N.: Reconstructing shape from shading images under point light source illumination. In: ICPR 1990, vol. 1, pp. 83–87 (1990)Google Scholar
  14. 14.
    Iwahori, Y., Woodham, R.J., Ozaki, M., Tanaka, H., Ishii, N.: Neural network based photometric stereo with a nearby rotational moving light source. IEICE Trans. Info. and Syst. E80–D(9), 948–957 (1997). ICPR 1990, vol. 1, pp. 83-87 (1990)Google Scholar
  15. 15.
    Vogel, O., Breuß, M., Weickert, J.: A direct numerical approach to perspective shape-from-shading. In: Vision Modeling and Visualization (VMV), pp. 91–100 (2007)Google Scholar
  16. 16.
    Benton, S.H.: The Hamilton-Jacobi Equation: A Global Approach, vol. 131. Academic Press, New York (1977)zbMATHGoogle Scholar
  17. 17.
    Prados, E., Faugeras, O.: Unifying approaches and removing unrealistic assumptions in shape from shading: mathematics can help. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 141–154. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Prados, E., Faugeras, O.: A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras. Technical report 5005, INRIA 2003 (2003)Google Scholar
  19. 19.
    Prados, E., Faugeras, O.: Shape from shading: a well-posed problem? In: CVPR 2005, pp. 870–877 (2005)Google Scholar
  20. 20.
    Shimasaki, Y., Iwahori, Y., Neog, D.R., Woodham, R.J., Bhuyan, M.K.: Generating lambertian image with uniform reflectance for endoscope image. In: IWAIT 2013, 1C–2 (Computer Vision 1), pp. 60–65 (2013)Google Scholar
  21. 21.
    Tatematsu, K., Iwahori, Y., Nakamura, T., Fukui, S., Woodham, R.J., Kasugai, K.: Shape from endoscope image based on photometric and geometric constraints. KES 2013 Procedia Comput. Sci. 22, 1285–1293 (2013). ElsevierGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yuji Iwahori
    • 1
    Email author
  • Seiya Tsuda
    • 1
  • Robert J. Woodham
    • 2
  • M. K. Bhuyan
    • 3
  • Kunio Kasugai
    • 4
  1. 1.Faculty of EngineeringChubu UniversityKasugaiJapan
  2. 2.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  4. 4.Department of GastroenterologyAichi Medical UniversityNagakute-cho, Aichi-gunJapan

Personalised recommendations