Pose Estimation and Movement Detection for Mobility Assessment of Elderly People in an Ambient Assisted Living Application

  • Julia RichterEmail author
  • Christian Wiede
  • Gangolf Hirtz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9493)


In European countries, the increasing number of elderly with dementia causes serious problems for the society, especially with regard to the caring sector. As technical support systems can be of assistance to caregivers and patients, a mobility assessment system for demented people is presented. The grade of mobility is measured by means of the person’s pose and movements in a monitored area. For this purpose, pose estimation and movement detection algorithms have been developed. These algorithms process 3-D data, which are provided by an optical stereo sensor installed in a living environment. The experiments demonstrated that the algorithms work robustly. In connection with a human machine interface, the system facilitates a mobilisation as well as a more valid assessment of the patient’s medical condition than it is presently the case. Moreover, recent advances with regard to action recognition as well as an outlook about necessary developments are presented.


Pose estimation Stereo vision Image understanding Video analysis 3-D image processing Machine learning Support vector machine Ambient assisted living 



This project was funded by the European Fund for Regional Development (EFRE).


  1. 1.
    Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006)CrossRefGoogle Scholar
  2. 2.
    Belbachir, A. N., Litzenberger, M., Schraml, S., Hofstatter, M., Bauer, D., Schon, P., Humenberger, M., Sulzbachner, C., Lunden, T., Merne, M.: CARE: a dynamic stereo vision sensor system for fall detection. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 731–734. IEEE (2012)Google Scholar
  3. 3.
    Berlin Institut für Bevölkerung und Entwicklung: Demenz-Report. (2011). Accessed 07 July 2014
  4. 4.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Sebastopol (2008)Google Scholar
  5. 5.
    Clement, J., Ploennigs, J., Kabitzsch, K.: Erkennung verschachtelter ADLs durch Smartmeter. Lebensqualität im Wandel von Demografie und Technik (2013)Google Scholar
  6. 6.
    Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  7. 7.
    Haritaoglu, I., Beymer, D., Flickner, M.: Ghost 3d: detecting body posture and parts using stereo. In: Proceedings Workshop on Motion and Video Computing, pp. 175–180. IEEE (2002)Google Scholar
  8. 8.
    Kalfhues, A.J., Hübschen, M., Löhrke, E., Nunner, G., Perszewski, H., Schulze, J.E., Stevens, T.: JUTTA–JUsT-in-Time Assistance: Betreuung und Pflege nach Bedarf. In: Shire, K.A., Leimeister, J.M. (eds.) Technologiegestützte Dienstleistungsinnovation in der Gesundheitswirtschaft, pp. 325–349. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kirchner, N., Alempijevic, A., Virgona, A.: Head-to-shoulder signature for person recognition. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1226–1231. IEEE (2012)Google Scholar
  10. 10.
    Link, N., Steiner, B., Pflüger, M., Kroll, J., Egeler, R.: safe@ home-Erste Erfahrungen aus dem Praxiseinsatz zur Notfallerkennung mit optischen Sensoren. Lebensqualität im Wandel von Demografie und Technik (2013)Google Scholar
  11. 11.
    Ning, H., Xu, W., Gong, Y., Huang, T.: Discriminative learning of visual words for 3D human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  12. 12.
    Richter, J., Findeisen, M., Hirtz, G.: Assessment and care system based on people detection for elderly suffering from dementia. In: IEEE Fourth International Conference on Consumer Electronics, ICCEBerlin 2014, pp. 59–63. IEEE (2014)Google Scholar
  13. 13.
    Scanaill, C.N., Carew, S., Barralon, P., Noury, N., Lyons, D., Lyons, G.M.: A review of approaches to mobility telemonitoring of the elderly in their living environment. Anna. Biomed. Eng. 34(4), 547–563 (2006). CrossRefGoogle Scholar
  14. 14.
    Steen, E. E., Frenken, T., Frenken, M., Hein, A.: Functional Assessment in Elderlies Homes: Early Results from a Field Trial. Lebensqualität im Wandel von Demografie und Technik (2013)Google Scholar
  15. 15.
    Ye, M., Wang, X., Yang, R., Ren, L., Pollefeys, M.: Accurate 3d pose estimation from a single depth image. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 731–738. IEEE (2011)Google Scholar
  16. 16.
    Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations