Skip to main content

The Trace Formula

  • Chapter
  • First Online:
The Spectrum of Hyperbolic Surfaces

Part of the book series: Universitext ((UTX))

  • 2539 Accesses

Abstract

In this chapter we derive the Selberg trace formula. We begin by describing it in a general framework which renders transparent the analogy with the Poisson summation formula recalled in the introduction. Having done so, the remaining work consists in explicating the general formula in the case of compact hyperbolic surfaces and then for the modular surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Why one uses this terminology will become clear in the next section.

  2. 2.

    The function \(\varphi\) is then replaced by a matrix-valued function called the scattering matrix.

References

  1. James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, American Mathematical Society, Providence, RI, 2005, pp. 1–263.

    Google Scholar 

  2. Pierre H. Bérard, Spectral geometry: direct and inverse problems, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  3. Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991.

    Google Scholar 

  4. Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  5. Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press Inc., Orlando, FL, 1984, Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.

    Google Scholar 

  6. Paul Cohen and Peter Sarnak, Notes on the trace formula, available at: http://web.math.princeton.edu/sarnak/, 1980.

  7. Dorian Goldfeld, Explicit formulae as trace formulae, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 281–288.

    Google Scholar 

  8. M. N. Huxley, Spectral methods of automorphic forms, second ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  9. Anthony W. Knapp, Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001, Reprint of the 1986 original.

    Google Scholar 

  10. Toshitsune Miyake, Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda.

    Google Scholar 

  11. R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of PSL(2, R), Invent. Math. 80 (1985), no. 2, 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  12. Peter Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), no. 2, 229–247.

    Article  MathSciNet  MATH  Google Scholar 

  13. Frigyes Riesz and Béla Sz.-, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.

    Google Scholar 

  14. Frigyes Riesz and Béla Sz.-, Représentations linéaires des groupes finis, Hermann, Paris, 1978.

    Google Scholar 

  15. Carl Ludwig Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2) 45 (1944), 667–685.

    Google Scholar 

  16. David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N.J., 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergeron, N. (2016). The Trace Formula. In: The Spectrum of Hyperbolic Surfaces. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27666-3_5

Download citation

Publish with us

Policies and ethics