Skip to main content

Maaß Forms

  • Chapter
  • First Online:
The Spectrum of Hyperbolic Surfaces

Part of the book series: Universitext ((UTX))

  • 2546 Accesses

Abstract

In this chapter we consider the particular case of congruence covers \(Y (N) =\varGamma (N)\setminus \mathcal{H}\) or \(Y _{0}(N) =\varGamma _{0}(N)\setminus \mathcal{H}\) of the modular surface. In the first sections we pay particular attention to the case of the modular group SL(2, Z).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The coefficient \(\frac{1} {2}\) comes from the fact that the element − I ∈ SL(2, Z) acts trivially on \(\mathcal{H}\).

  2. 2.

    When \(\mathop{\mathrm{Re}}\nolimits (s) > 1\), this is obvious since s(1 − s) doesn’t lie in R +.

  3. 3.

    We shall see that this explains why the constant functions belong to the subspace \(\overline{\mathcal{E}(\varGamma \setminus \mathcal{H})} \subset L^{2}(\varGamma \setminus \mathcal{H})\) in the decomposition of Proposition 4.9 below.

  4. 4.

    Note that according to Fubini’s theorem we can speak of the constant term (as a measurable function) f 0 of any integrable function f on D. The subspace \(\overline{\mathcal{C}(\varGamma \setminus \mathcal{H})}\) then consists of functions whose constant term is almost everywhere equal to 0.

  5. 5.

    This is no problem at zero since ψ is of compact support.

  6. 6.

    Since f is cuspidal, f Y = f.

  7. 7.

    This is an abuse of notation: the Eisenstein series E(⋅ , 1∕2 + ir) is not square integrable.

  8. 8.

    If the geodesic is one of the γ(pq, p′∕q′) defining the triangulation, its coding is simply \((\ldots, 0, 1, 0,\ldots )\).

  9. 9.

    Recall that the continued fraction expansion of β is

    $$\displaystyle{\beta = b_{0} + \frac{1} {b_{1} + \frac{1} {b_{2}+\ldots }} = [b_{0},b_{1},\ldots ],}$$

    where the (b i ) form a sequence of integers (a finite sequence, if β ∈ Q) with b 0 ∈ Z and b i  > 0 for i > 0.

  10. 10.

    We recover here the same alternative as at the end of the preceding subsection on the subject of solving the Pell equation by means of continued fractions.

  11. 11.

    It is natural to include the factor of \(\sqrt{y}\) in order to obtain a sum of Whittaker functions.

  12. 12.

    Indeed, one checks easily that the function \(L(s,\lambda ^{k})\) is non-zero by writing it as an Euler product in the region of absolute convergence.

  13. 13.

    Starting from a genus 1 subgroup of SL(2, Z) one can indeed form cyclic covers of genus 1 and m cusps. As m gets large, it is possible to show (see [22]) that these covers have m − 1 small eigenvalues. On the other hand Huxley [60] (see also Otal [94] as well as Otal and Rosas [95]) proves that for a genus 1 surface the cuspidal spectrum is contained in \(]1/4, +\infty [\).

  14. 14.

    In this context the term “hyperbolic” has a different meaning from the hyperbolic geometry that we consider in this book.

  15. 15.

    In the case of the field \(\mathbf{Q}(\sqrt{2})\) such a character is necessarily trivial. We write it as \(\lambda ^{0}\).

  16. 16.

    See § 6.3.1 for a rapid introduction to the theory of representations of finite groups.

References

  1. Tim Bedford, Michael Keane, and Caroline Series (eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, April 17–28, 1989), Oxford Science Publications, New York, The Clarendon Press Oxford University Press, 1991.

    Google Scholar 

  2. D. Bump, J. W. Cogdell, E. de Shalit, D. Gaitsgory, E. Kowalski, and S. S. Kudla, An introduction to the Langlands program, Birkhäuser Boston Inc., Boston, MA, 2003, Lectures presented at the Hebrew University of Jerusalem, Jerusalem, March 12–16, 2001, Edited by Joseph Bernstein and Stephen Gelbart.

    Google Scholar 

  3. Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  4. Peter Buser, Riemannsche Flächen mit Eigenwerten in (0, 1∕4), Comment. Math. Helv. 52 (1977), no. 1, 25–34.

    Article  MathSciNet  MATH  Google Scholar 

  5. Françoise Dal’Bo, Geodesic and horocyclic trajectories, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011, Translated from the 2007 French original.

    Google Scholar 

  6. J.-M. Deshouillers and, Automorphic forms and L-functions for the group GL (n, R), Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006, With an appendix by Kevin A. Broughan.

    Google Scholar 

  7. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376.

    Article  MathSciNet  Google Scholar 

  8. J.-M. Deshouillers and, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1–2, 11–51.

    Google Scholar 

  9. M. N. Huxley, Cheeger’s inequality with a boundary term, Comment. Math. Helv. 58 (1983), no. 3, 347–354.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. N. Huxley, Spectral methods of automorphic forms, second ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  11. Serge Lang, Algebraic number theory, second ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994.

    Google Scholar 

  12. Robert P. Langlands, Base change for GL (2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J., 1980.

    Google Scholar 

  13. Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Princeton Univ. Press, Princeton, N.J., 1976, Annals of Mathematics Studies, No. 87.

    Google Scholar 

  14. Elon Lindenstrauss and Akshay Venkatesh, Existence and Weyl’s law for spherical cusp forms, Geom. Funct. Anal. 17 (2007), no. 1, 220–251.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jean-Pierre Otal, Three topological properties of small eigenfunctions on hyperbolic surfaces, Geometry and dynamics of groups and spaces, Progress in Mathematics, vol. 265, Birkhäuser, Basel, 2008, pp. 685–695.

    Google Scholar 

  17. Jean-Pierre Otal and Eulalio Rosas, Pour toute surface hyperbolique de genre g,\(\lambda _{2g-2}> 1/4\), Duke Math. J. 150 (2009), no. 1, 101–115.

    Google Scholar 

  18. Frigyes Riesz and Béla Sz.-, Nonvanishing of L-functions on re (s) = 1, available at: http://web.math.princeton.edu/sarnak/ShalikaBday2002.pdf, 2002.

  19. Frigyes Riesz and Béla Sz.-, Advanced analytic number theory, second ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980.

    Google Scholar 

  20. Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996, Basic theory.

    Google Scholar 

  21. Richard Taylor, Galois representations, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 1, 73–119.

    Google Scholar 

  22. Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175.

    Google Scholar 

  23. Franck Wielonsky, Séries d’Eisenstein, intégrales toroïdales et une formule de Hecke, Enseign. Math. (2) 31 (1985), no. 1–2, 93–135.

    Google Scholar 

  24. D. Zagier, Eisenstein series and the Riemann zeta function, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 275–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergeron, N. (2016). Maaß Forms. In: The Spectrum of Hyperbolic Surfaces. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27666-3_4

Download citation

Publish with us

Policies and ethics