Skip to main content

Spectral Decomposition

  • Chapter
  • First Online:
The Spectrum of Hyperbolic Surfaces

Part of the book series: Universitext ((UTX))

  • 2566 Accesses

Abstract

The goal of this chapter is to prove the Spectral Theorem (Theorem 1.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A continuous operator (T, D T ) on D T naturally extends to a bounded operator of H to itself.

  2. 2.

    The usual Euclidean Laplacian is negative definite. Throughout this text the hyperbolic Laplacian that we consider is the geometric Laplacian, which is positive definite. This accounts for the difference in sign here.

  3. 3.

    The two interior parentheses on the right-hand side of (3.5) are the “normal derivatives” which arise in the general Green’s formula on a Riemannian manifold.

  4. 4.

    Proposition 3.2 implies in particular that the functions F s and F 1−s are equal for s ∈ [0, 1]; we shall in general assume that \(s\leqslant 1/2\).

  5. 5.

    Recall that ρ(z, w) is the hyperbolic distance between two points z and w in \(\mathcal{H}\).

  6. 6.

    Here the term “invariant” comes from the fact that for every g ∈ G and for all \(z,w \in \mathcal{H}\) we have k(gz, gw) = k(z, w).

  7. 7.

    One could just as well refer to the proof of Lemma 3.29.

  8. 8.

    This can be easily seen if one recalls that this particular hyperbolic circle is a Euclidean circle whose maximal ordinate is on the imaginary axis.

  9. 9.

    Note the change in convention relative to the introduction.

  10. 10.

    The notation “PW” is in reference to the classical Paley-Wiener theorem, see [106].

  11. 11.

    One can just as well verify this directly by using the formula for \(p_{\mathcal{H}}(z,w,t)\), but it is a bit tedious.

  12. 12.

    This is a fundamental property of hyperbolic geometry.

  13. 13.

    Recall that | ⋅ | denotes the Hilbert norm of \(L^{2}(\varGamma \setminus \mathcal{H})\).

  14. 14.

    Note that \(\varphi _{0}\) is the function constantly equal to \(1/\sqrt{\mathop{\mathrm{area } }\nolimits (S)}\).

References

  1. Pierre H. Bérard, Spectral geometry: direct and inverse problems, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  2. Andrew R. Booker and Andreas Strömbergsson, Numerical computations with the trace formula and the Selberg eigenvalue conjecture, J. Reine Angew. Math. 607 (2007), 113–161.

    MathSciNet  MATH  Google Scholar 

  3. Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh, Effective computation of Maass cusp forms, Int. Math. Res. Not. (2006), Art. ID 71281, 34.

    Google Scholar 

  4. Haïm Brezis, Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

    Google Scholar 

  5. Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  6. Daniel Bump, W., A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230.

    Google Scholar 

  7. Daniel Bump, W., Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston Inc., Boston, MA, 1992.

    Google Scholar 

  8. Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 1970, pp. 195–199.

    Google Scholar 

  9. E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  10. J.-M. Deshouillers and H. Iwaniec, The nonvanishing of Rankin-Selberg zeta-functions at special points, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, American Mathematical Society, Providence, RI, 1986, pp. 51–95.

    Google Scholar 

  11. Nelson Dunford and Jacob T. Schwartz, Linear operators., Wiley Classics Library, John Wiley & Sons Inc., New York, 1988.

    Google Scholar 

  12. Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, third ed., Universitext, Springer-Verlag, Berlin, 2004.

    Book  MATH  Google Scholar 

  13. M. N. Huxley, Spectral methods of automorphic forms, second ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  14. Wenzhi Luo, Nonvanishing of L-values and the Weyl law, Ann. of Math. (2) 154 (2001), no. 2, 477–502.

    Google Scholar 

  15. R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of PSL(2, R), Invent. Math. 80 (1985), no. 2, 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  16. Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications Inc., New York, 1990, Translated from the second French edition by Leo F. Boron, Reprint of the 1955 original.

    Google Scholar 

  17. Walter Roelcke, Über die Wellengleichung bei Grenzkreisgruppen erster Art, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955 (1953/1955), 159–267 (1956).

    Google Scholar 

  18. Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.

    MATH  Google Scholar 

  19. Frigyes Riesz and Béla Sz.-, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991.

    Google Scholar 

  20. Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996, Basic theory.

    Google Scholar 

  21. Scott A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. (2) 139 (1994), no. 2, 239–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergeron, N. (2016). Spectral Decomposition. In: The Spectrum of Hyperbolic Surfaces. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27666-3_3

Download citation

Publish with us

Policies and ethics