Advertisement

Efficient and Fully Secure Forward Secure Ciphertext-Policy Attribute-Based Encryption

  • Takashi KitagawaEmail author
  • Hiroki Kojima
  • Nuttapong Attrapadung
  • Hideki Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7807)

Abstract

Attribute-based encryption (ABE) schemes provide a fine-grained access control mechanism over encrypted data, and are useful for cloud online-storage services, or Pay-TV systems and so on. To apply ABE for such services, key exposure protection mechanisms are necessary. Unfortunately, standard security notions of ABE offer no protection against key exposure. One solution to this problem is to give forward security to ABE schemes. In forward secure cryptographic schemes, even if a secret key is exposed, messages encrypted during all time periods prior to the key leak remain secret. In this paper we propose an efficient Forward Secure Ciphertext-Policy Attribute-Based Encryption (FS-CP-ABE) which is efficient and fully secure. To construct efficient FS-CP-ABE, we first introduce a new cryptographic primitive called Ciphertext-Policy Attribute-Based Encryption with Augmented Hierarchy (CP-ABE-AH). Intuitively, CP-ABE-AH is an encryption scheme with both hierarchical identity based encryption and CP-ABE properties. Then we show that FS-CP-ABE can be constructed from CP-ABE-AH generically. We give the security definition of FS-CP-ABE, and security proofs based on three complexity assumptions. The size of public parameter is \(O(\log T)\), and the secret key size is \(O(\log ^2 T)\) where T is the number of time slots.

Keywords

Encryption Scheme Access Structure Randomized Algorithm Public Parameter Complexity Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast encryption with short ciphertexts and private keys. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 161–177. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology, Haifa, Israel (1996)Google Scholar
  4. 4.
    Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Proceedings of IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)Google Scholar
  7. 7.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  8. 8.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communication Security (CCS 2006), pp. 89–98. ACM (2006)Google Scholar
  9. 9.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Yao D., Feng R.: Adaptive key protection in complex cryptosystems with attributes. In: IACR Cryptology ePrint Archive 2012/136, (2012)Google Scholar
  13. 13.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, pp. 354–363. ACM (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Takashi Kitagawa
    • 1
    Email author
  • Hiroki Kojima
    • 2
  • Nuttapong Attrapadung
    • 3
  • Hideki Imai
    • 1
  1. 1.Chuo UniversityTokyoJapan
  2. 2.Internet Initiative Japan Inc.TokyoJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations