Advertisement

Integration of Rule-Based Models and Compartmental Models of Neurons

  • David C. SterrattEmail author
  • Oksana Sorokina
  • J. Douglas Armstrong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7699)

Abstract

Synaptic plasticity depends on the interaction between electrical activity in neurons and the synaptic proteome, the collection of over 1000 proteins in the post-synaptic density (PSD) of synapses. To construct models of synaptic plasticity with realistic numbers of proteins, we aim to combine rule-based models of molecular interactions in the synaptic proteome with compartmental models of the electrical activity of neurons. Rule-based models allow interactions between the combinatorially large number of protein complexes in the postsynaptic proteome to be expressed straightforwardly. Simulations of rule-based models are stochastic and thus can deal with the small copy numbers of proteins and complexes in the PSD. Compartmental models of neurons are expressed as systems of coupled ordinary differential equations and solved deterministically. We present an algorithm which incorporates stochastic rule-based models into deterministic compartmental models and demonstrate an implementation (“KappaNEURON”) of this hybrid system using the SpatialKappa and NEURON simulators.

Keywords

Hybrid stochastic-deterministic simulations Hybrid spatial-nonspatial simulations Multiscale simulation Rule-based models Compartmental models Computational neuroscience 

References

  1. 1.
    Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signalling pathways. Science 283, 381–387 (1999)CrossRefGoogle Scholar
  2. 2.
    Cannon, R.C., O’Donnell, C., Nolan, M.F.: Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput. Biol. 68, e1000886 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carnevale, T., Hines, M.: The NEURON Book. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Castillo, P.E., Younts, T.J., Chávez, A.E., Hashimotodani, Y.: Endocannabinoid signaling and synaptic function. Neuron 761, 70–81 (2012)CrossRefGoogle Scholar
  5. 5.
    Chylek, L.A., Stites, E.C., Posner, R.G., Hlavacek, W.S.: Innovations of the rule-based modeling approach. In: Prokop, A., Csukás, B. (eds.) Systems Biology, pp. 273–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Collins, M.O., Husi, H., Yu, L., Brandon, J.M., Anderson, C.N.G., Blackstock, W.P., Choudhary, J.S., Grant, S.G.N.: Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97, 16–23 (2006)CrossRefGoogle Scholar
  7. 7.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Faas, G.C., Raghavachari, S., Lisman, J.E., Mody, I.: Calmodulin as a direct detector of Ca\(^{2+}\) signals. Nat. Neurosci. 143, 301–304 (2011)CrossRefGoogle Scholar
  9. 9.
    Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems with BioNetGen. In: Maly, I.V. (ed.) Systems Biology, Methods in Molecular Biology, vol. 500, pp. 113–167. Humana Press (2009)Google Scholar
  10. 10.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  11. 11.
    Harris, K.M., Kater, S.B.: Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994)CrossRefGoogle Scholar
  12. 12.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)CrossRefGoogle Scholar
  13. 13.
    Kiehl, T.R., Mattheyses, R.M., Simmons, M.K.: Hybrid simulation of cellular behavior. Bioinformatics 203, 316–322 (2004)CrossRefGoogle Scholar
  14. 14.
    Lisman, J.E., Zhabotinsky, A.M.: A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 312, 191–201 (2001)CrossRefGoogle Scholar
  15. 15.
    Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficiency by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)CrossRefGoogle Scholar
  16. 16.
    Martin, S.J., Grimwood, P.D., Morris, R.G.M.: Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 231, 649–711 (2000)CrossRefGoogle Scholar
  17. 17.
    Mattioni, M., Le Novère, N.: Integration of biochemical and electrical Signaling-Multiscale model of the medium spiny neuron of the striatum. PLoS ONE 87, e66811 (2013)CrossRefGoogle Scholar
  18. 18.
    McDougal, R.A., Hines, M.L., Lytton, W.W.: Reaction-diffusion in the NEURON simulator. Front. Neuroinform. 7, 1–13 (2013)CrossRefGoogle Scholar
  19. 19.
    Pepke, S., Kinzer-Ursem, T., Mihalas, S., Kennedy, M.B.: A dynamic model of interactions of Ca\(^{2+}\), calmodulin, and catalytic subunits of Ca\(^{2+}\)/calmodulin-dependent protein kinase II. PLoS Comput. Biol. 62, e1000675 (2010)CrossRefGoogle Scholar
  20. 20.
    Pocklington, A.J., Cumiskey, M., Armstrong, J.D., Grant, S.G.N.: The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. 2, 1–14 (2006)CrossRefGoogle Scholar
  21. 21.
    Ray, S., Bhalla, U.S.: PyMOOSE: interoperable scripting in python for MOOSE. Front. Neuroinform. vol. 2(6) (2008)Google Scholar
  22. 22.
    Smolen, P., Baxter, D.A., Byrne, J.H.: A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys. J. 908, 2760–2775 (2006)CrossRefGoogle Scholar
  23. 23.
    Sorokina, O., Sorokin, A., Armstrong, J.D.: Towards a quantitative model of the post-synaptic proteome. Mol. Biosyst. 7, 2813–2823 (2011)CrossRefGoogle Scholar
  24. 24.
    Sorokina, O., Sorokin, A., Armstrong, J.D., Danos, V.: A simulator for spatially extended kappa models. Bioinformatics 29, 3105–3106 (2013)CrossRefGoogle Scholar
  25. 25.
    Sterratt, D., Graham, B., Gillies, A., Willshaw, D.: Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge (2011) CrossRefGoogle Scholar
  26. 26.
    Stiles, J.R., Bartol, T.M.: Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter, E. (ed.) Computational Neuroscience: Realistic Modeling for Experimentalists, Chap. 4, pp. 87–127. CRC Press, Boca Raton (2001)Google Scholar
  27. 27.
    Urakubo, H., Honda, M., Froemke, R.C., Kuroda, S.: Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J. Neurosci. 2813, 3310–3323 (2008)CrossRefGoogle Scholar
  28. 28.
    Zeng, S., Holmes, W.R.: The effect of noise on CaMKII activation in a dendritic spine during LTP induction. J. Neurophysiol. 1034, 1798–1808 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David C. Sterratt
    • 1
    Email author
  • Oksana Sorokina
    • 1
  • J. Douglas Armstrong
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations