Advertisement

Optimal Observation Time Points in Stochastic Chemical Kinetics

  • Charalampos KyriakopoulosEmail author
  • Verena Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7699)

Abstract

Wet-lab experiments, in which the dynamics within living cells are observed, are usually costly and time consuming. This is particularly true if single-cell measurements are obtained using experimental techniques such as flow-cytometry or fluorescence microscopy. It is therefore important to optimize experiments with respect to the information they provide about the system. In this paper we make a priori predictions of the amount of information that can be obtained from measurements. We focus on the case where the measurements are made to estimate parameters of a stochastic model of the underlying biochemical reactions. We propose a numerical scheme to approximate the Fisher information of future experiments at different observation time points and determine optimal observation time points. To illustrate the usefulness of our approach, we apply our method to two interesting case studies.

Keywords

Unknown Parameter Fisher Information Fisher Information Matrix Observation Sequence Chemical Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinf. Syst. Biol. 9 (2012)Google Scholar
  3. 3.
    Box, G.E.P., Lucas, H.L.: Design of experiments in non-linear situations. Biometrika 46(1/2), 77–90 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burrage, K., Hegland, M., Macnamara, F., Sidje, B.: A krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Proceedings of the Markov 150th Anniversary Conference, pp. 21–38. Boson Books (2006)Google Scholar
  5. 5.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  6. 6.
    Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Komorowski, M., Costa, M.J., Rand, D.A., Stumpf, M.P.H.: Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Nat. Acad. Sci. 108(21), 8645–8650 (2011)CrossRefGoogle Scholar
  8. 8.
    Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998) zbMATHGoogle Scholar
  9. 9.
    Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of genetic switch systems. Phys. Rev. E 75, 021904 (2007)CrossRefGoogle Scholar
  10. 10.
    Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)CrossRefGoogle Scholar
  11. 11.
    Merlé, Y., Mentré, F.: Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharm. 23(1), 101–125 (1995)CrossRefGoogle Scholar
  12. 12.
    Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044144 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pronzato, L., Walter, E.: Robust experiment design via stochastic approximation. Math. Biosci. 75(1), 103–120 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEEE Proc. Syst. Biol 153, 168–178 (2006)CrossRefGoogle Scholar
  15. 15.
    Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588–20130588 (2013). arXiv:1304.1455 [q-bio]CrossRefGoogle Scholar
  16. 16.
    Sidje, R., Burrage, K., MacNamara, S.: Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    van den Bos, A.: Parameter Estimation for Scientists and Engineers. Wiley-Interscience, Hoboken (2007) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Saarland UniversitySaarbrückenGermany

Personalised recommendations