Skip to main content

Targeting Coagulation Mediators in Head and Neck Cancer

  • Chapter
  • First Online:
  • 876 Accesses

Abstract

This chapter examines the role of the coagulation system in cancer. While the role of a prothrombotic state was linked to cancer development many years ago, effective targeting of mediators of coagulation is not yet an element of cancer therapy. In the last decade, multiple novel anticoagulants have been approved for use in the prevention or treatment of thrombotic conditions. The presence of a larger armamentarium of medications with fewer bleeding side effects makes them suitable adjuncts in the multimodal treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lima LG, Monteiro RQ. Activation of blood coagulation in cancer: implications for tumour progression. Biosci Rep. 2013;33(5):e00064.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Otten HM, Mathijssen J, ten Cate H, Soesan M, Inghels M, Richel DJ, et al. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch Intern Med. 2004;164(2):190–4.

    Article  PubMed  Google Scholar 

  3. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 2004;64(23):8613–9.

    Article  PubMed  Google Scholar 

  4. ten Cate H, Falanga A. Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb. 2008;36(3-4):122–30.

    Google Scholar 

  5. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med. 2001;345(26):1890–1900.

    Article  PubMed  Google Scholar 

  6. Howlader N Noone A, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ Cronin K. SEER cancer statistics review, 1975–2011 posted to the SEER web site, April 2014. based on November 2013 SEER data submission.

    Google Scholar 

  7. Bernstein JM, Bernstein CR, West CM, Homer JJ. Molecular and cellular processes underlying the hallmarks of head and neck cancer. Eur Arch Otorhinolaryngol. 2013;270(10):2585–93.

    Article  PubMed  Google Scholar 

  8. Liao CT, Wallace CG, Lee LY, Hsueh C, Lin CY, Fan KH, et al. Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. 2014;50(8):721–31.

    Article  PubMed  Google Scholar 

  9. Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9.

    Article  PubMed  Google Scholar 

  10. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  PubMed  Google Scholar 

  11. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.

    Article  PubMed  Google Scholar 

  12. Rachidi S, Wallace K, Day TA, Alberg AJ, Li Z. Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. J Hematol Oncol. 2014;7:65.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bao YN, Cao X, Luo DH, Sun R, Peng LX, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13(12):1958–69.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Falanga A. Thrombophilia in cancer. Semin Thromb Hemost. 2005;31(1):104–10.

    Article  PubMed  Google Scholar 

  15. Zacharski LR, Memoli VA, Ornstein DL, Rousseau SM, Kisiel W, Kudryk BJ. Tumor cell procoagulant and urokinase expression in carcinoma of the ovary. J Natl Cancer Inst. 1993;85(15):1225–30.

    Article  PubMed  Google Scholar 

  16. Gale AJ, Gordon SG. Update on tumor cell procoagulant factors. Acta Haematol. 2001;106(1-2):25–32.

    Article  PubMed  Google Scholar 

  17. Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol. 2002;3(1):27–34.

    Article  PubMed  Google Scholar 

  18. Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162(6):1747–57.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fernandez PM, Patierno SR, Rickles FR. Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost. 2004;30(1):31–44.

    Article  PubMed  Google Scholar 

  20. Sahni A, Simpson-Haidaris PJ, Sahni SK, Vaday GG, Francis CW. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost. 2008;6(1):176–83.

    Article  PubMed  Google Scholar 

  21. Lalla RV, Goralnick SJ, Tanzer ML, Kreutzer DL. Fibrin induces IL-8 expression from human oral squamous cell carcinoma cells. Oral Oncol. 2001;37(3):234–42.

    Article  PubMed  Google Scholar 

  22. Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood. 2000;96(10):3302–9.

    PubMed  Google Scholar 

  23. Shu YJ, Weng H, Bao RF, Wu XS, Ding Q, Cao Y, et al. Clinical and prognostic significance of preoperative plasma hyperfibrinogenemia in gallbladder cancer patients following surgical resection: a retrospective and in vitro study. BMC Cancer. 2014;14:566.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bruggemann LW, Versteeg HH, Niers TM, Reitsma PH, Spek CA. Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders. J Cell Mol Med. 2008;12(6B):2622–7.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Battistelli S, Stefanoni M, Genovese A, Vittoria A, Cappelli R, Roviello F. Prevalence of factor V Leiden and prothrombin G20210A in patients with gastric cancer. World J Gastroenterol. 2006;12(26):4179–80.

    PubMed Central  PubMed  Google Scholar 

  26. Vairaktaris E, Yapijakis C, Wiltfang J, Ries J, Vylliotis A, Derka S, et al. Are factor V and prothrombin mutations associated with increased risk of oral cancer? Anticancer Res. 2005;25(3c):2561–5.

    PubMed  Google Scholar 

  27. Vossen CY, Hoffmeister M, Chang-Claude JC, Rosendaal FR, Brenner H. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7.

    Article  PubMed  Google Scholar 

  28. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–62.

    Article  PubMed  Google Scholar 

  29. Koga Y, Manabe S, Aihara Y, Sato R, Tsumura R, Iwafuji H, et al. Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer. 2015;137(6):1457–66.

    Article  PubMed  Google Scholar 

  30. Langer F, Amirkhosravi A, Ingersoll SB, Walker JM, Spath B, Eifrig B, et al. Experimental metastasis and primary tumor growth in mice with hemophilia A. J Thromb Haemost. 2006;4(5):1056–62.

    Article  PubMed  Google Scholar 

  31. Miesbach W, Seifried E. Does haemophilia influence cancer-related mortality in HIV-negative patients? Haemophilia. 2011;17(1):55–60.

    Article  PubMed  Google Scholar 

  32. Huang YC, Tsan YT, Chan WC, Wang JD, Chu WM, Fu YC, et al. Incidence and survival of cancers among 1,054 hemophilia patients: a nationwide and 14-year cohort study. Am J Hematol. 2015;90(4):E55–9.

    Article  PubMed  Google Scholar 

  33. Palumbo JS, Barney KA, Blevins EA, Shaw MA, Mishra A, Flick MJ, et al. Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost. 2008;6(5):812–9.

    Article  PubMed  Google Scholar 

  34. Kwaan HC, Mazar AP, McMahon BJ. The apparent uPA/PAI-1 paradox in cancer: more than meets the eye. Semin Thromb Hemost. 2013;39(4):382–91.

    Article  PubMed  Google Scholar 

  35. Bezuhly M, Cullen R, Esmon CT, Morris SF, West KA, Johnston B, et al. Role of activated protein C and its receptor in inhibition of tumor metastasis. Blood. 2009;113(14):3371–4.

    Article  PubMed  Google Scholar 

  36. Ruf W, Schaffner F. Role of the protein C receptor in cancer progression. Thromb Res. 2014;133 Suppl 2:S85–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mochizuki S, Soejima K, Shimoda M, Abe H, Sasaki A, Okano HJ, et al. Effect of ADAM28 on carcinoma cell metastasis by cleavage of von Willebrand factor. J Natl Cancer Inst. 2012;104(12):906–22.

    Article  PubMed  Google Scholar 

  38. Zucker S, Cao J. New wrinkle between cancer and blood coagulation: metastasis and cleavage of von Willebrand factor by ADAM28. J Natl Cancer Inst. 2012;104(12):887–8.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Luo GP, Ni B, Yang X, Wu YZ. von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol. 2012;128(3):158–69.

    Article  PubMed  Google Scholar 

  40. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TA, Sutton RE, et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117(3):1071–80.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Terraube V, Pendu R, Baruch D, Gebbink MF, Meyer D, Lenting PJ, et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost. 2006;4(3):519–26.

    Article  PubMed  Google Scholar 

  42. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  PubMed  Google Scholar 

  43. Paneesha S, McManus A, Arya R, Scriven N, Farren T, Nokes T, et al. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thromb Haemost. 2010;103(2):338–43.

    Article  PubMed  Google Scholar 

  44. Hakelius M, Koskela A, Ivarsson M, Grenman R, Rubin K, Gerdin B, et al. Keratinocytes and head and neck squamous cell carcinoma cells regulate urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in fibroblasts. Anticancer Res. 2013;33(8):3113–8.

    PubMed  Google Scholar 

  45. Wojtukiewicz MZ, Zacharski LR, Rucinska M, Zimnoch L, Jaromin J, Rozanska-Kudelska M, et al. Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thromb Haemost. 1999;82(6):1659–62.

    PubMed  Google Scholar 

  46. Buchs AE, Zehavi S, Sher O, Yeheskely E, Muggia-Sulam M, Sherman Y, et al. Heparanase, galectin-3, and tissue factor mRNA are expressed in benign neoplasms of the thyroid. Endocrine. 2003;22(2):81–4.

    Article  PubMed  Google Scholar 

  47. Belting M, Dorrell MI, Sandgren S, Aguilar E, Ahamed J, Dorfleutner A, et al. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat Med. 2004;10(5):502–9.

    Article  PubMed  Google Scholar 

  48. Zhang Y, Deng Y, Luther T, Muller M, Ziegler R, Waldherr R, et al. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest. 1994;94(3):1320–7.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Pabinger I, Posch F. Flamethrowers: blood cells and cancer thrombosis risk. Hematology Am Soc Hematol Educ Program. 2014;2014(1):410–7.

    Article  PubMed  Google Scholar 

  50. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  PubMed  Google Scholar 

  51. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers Jr DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674–9.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Yapijakis C, Bramos A, Nixon AM, Ragos V, Vairaktaris E. The interplay between hemostasis and malignancy: the oral cancer paradigm. Anticancer Res. 2012;32(5):1791–800.

    PubMed  Google Scholar 

  55. Vairaktaris E, Serefoglou Z, Avgoustidis D, Yapijakis C, Critselis E, Vylliotis A, et al. Gene polymorphisms related to angiogenesis, inflammation and thrombosis that influence risk for oral cancer. Oral Oncol. 2009;45(3):247–53.

    Article  PubMed  Google Scholar 

  56. Weng CJ, Lin CW, Chung TT, Tsai CM, Chen MK, Yang SF. Impact of uPA system gene polymorphisms on the susceptibility of environmental factors to carcinogenesis and the development of clinicopathology of oral cancer. Ann Surg Oncol. 2011;18(3):805–12.

    Article  PubMed  Google Scholar 

  57. Gao S, Nielsen BS, Krogdahl A, Sorensen JA, Tagesen J, Dabelsteen S, et al. Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa. Genes Chromosomes Cancer. 2010;49(6):526–38.

    PubMed  Google Scholar 

  58. Yoshino I, Kometani T, Shoji F, Osoegawa A, Ohba T, Kouso H, et al. Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cells. Cancer. 2007;110(2):369–74.

    Article  PubMed  Google Scholar 

  59. Miller GJ, Bauer KA, Howarth DJ, Cooper JA, Humphries SE, Rosenberg RD. Increased incidence of neoplasia of the digestive tract in men with persistent activation of the coagulant pathway. J Thromb Haemost. 2004;2(12):2107–14.

    Article  PubMed  Google Scholar 

  60. Nash GF, Walsh DC, Kakkar AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol. 2001;2(10):608–13.

    Article  PubMed  Google Scholar 

  61. Chang MC, Chan CP, Ho YS, Lee JJ, Lin PS, Lin BR, et al. Signaling pathways for induction of platelet aggregation by SAS tongue cancer cells – a mechanism of hematogenous metastasis. J Oral Pathol Med. 2009;38(5):434–40.

    Article  PubMed  Google Scholar 

  62. Bosetti C, Rosato V, Gallus S, Cuzick J, La Vecchia C. Aspirin and cancer risk: a quantitative review to 2011. Ann Oncol. 2012;23(6):1403–15.

    Article  PubMed  Google Scholar 

  63. Zou H, Yue W, Yu WK, Liu D, Fong CC, Zhao J, et al. Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal Chem. 2015;87(14):7098–108.

    Article  PubMed  Google Scholar 

  64. Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315–9.

    Article  PubMed  Google Scholar 

  65. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10(4):241–53.

    Article  PubMed  Google Scholar 

  66. Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452–8.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Christopher D, Lansford RG, Henning B, Somers KD, Yoon KS, Whiteside TL, Clayman GL, Welkoborsky HJ, Carey TE. Head and neck cancers. In: Masters JRWP B, editor. Human cell culture, vol. 2. Boston and London: Kluwer; 1999. p. 185–255.

    Google Scholar 

  68. Haycock JW. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol. 2011;695:1–15.

    Article  PubMed  Google Scholar 

  69. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  PubMed  Google Scholar 

  70. Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP, et al. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS One. 2012;7(2):e32459.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Wu J, Mu Q, Thiviyanathan V, Annapragada A, Vigneswaran N. Cancer stem cells are enriched in Fanconi anemia head and neck squamous cell carcinomas. Int J Oncol. 2014;45(6):2365–72.

    PubMed Central  PubMed  Google Scholar 

  72. Lee YC, Yu CC, Lan C, Lee CH, Lee HT, Kuo YL, et al. Plasminogen activator inhibitor-1 as regulator of tumor-initiating cell properties in head and neck cancers. Head Neck. 2015.

    Google Scholar 

  73. Shimosato Y, Kameya T, Nagai K, Hirohashi S, Koide T, Hayashi H, et al. Transplantation of human tumors in nude mice. J Natl Cancer Inst. 1976;56(6):1251–60.

    PubMed  Google Scholar 

  74. Myers JN, Holsinger FC, Jasser SA, Bekele BN, Fidler IJ. An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res. 2002;8(1):293–8.

    PubMed  Google Scholar 

  75. White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13(9):624–36.

    Article  PubMed  Google Scholar 

  76. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721–31.

    Article  PubMed  Google Scholar 

  77. Kretz CA, Weyand AC, Shavit JA. Modeling disorders of blood coagulation in the Zebrafish. Curr Pathobiol Rep. 2015;3(2):155–61.

    Article  PubMed  Google Scholar 

  78. Tat J, Liu M, Wen XY. Zebrafish cancer and metastasis models for in vivo drug discovery. Drug Discov Today Technol. 2013;10(1):e83–9.

    Article  PubMed  Google Scholar 

  79. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2(2):183–9.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Jung DW, Kim J, Che ZM, Oh ES, Kim G, Eom SH, et al. A triazine compound S06 inhibits proinvasive crosstalk between carcinoma cells and stromal fibroblasts via binding to heat shock protein 90. Chem Biol. 2011;18(12):1581–90.

    Article  PubMed  Google Scholar 

  81. Xia Y, Song X, Li D, Ye T, Xu Y, Lin H, et al. YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy in preclinical models. Sci Rep. 2014;4:6031.

    PubMed Central  PubMed  Google Scholar 

  82. Babu PV, Mukherjee S, Deora GS, Chennubhotla KS, Medisetti R, Yellanki S, et al. Ligand/PTC-free intramolecular Heck reaction: synthesis of pyrroloquinoxalines and their evaluation against PDE4/luciferase/oral cancer cell growth in vitro and zebrafish in vivo. Org Biomol Chem. 2013;11(39):6680–5.

    Article  PubMed  Google Scholar 

  83. Xiong P, Xiao LY, Yang R, Guo Q, Zhao YQ, Li W, et al. Flotillin-1 promotes cell growth and metastasis in oral squamous cell carcinoma. Neoplasma. 2013;60(4):395–405.

    Article  PubMed  Google Scholar 

  84. Lee BS, Kang SU, Hwang HS, Kim YS, Sung ES, Shin YS, et al. An agonistic antibody to human death receptor 4 induces apoptotic cell death in head and neck cancer cells through mitochondrial ROS generation. Cancer Lett. 2012;322(1):45–57.

    Article  PubMed  Google Scholar 

  85. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods. 2014;11(8):821–4.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Vo AH, Swaroop A, Liu Y, Norris ZG, Shavit JA. Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS One. 2013;8(9):e74682.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Liu Y, Kretz CA, Maeder ML, Richter CE, Tsao P, Vo AH, et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood. 2014;124(1):142–50.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael U. Callaghan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jesudas, R. et al. (2016). Targeting Coagulation Mediators in Head and Neck Cancer. In: M. Fribley, A. (eds) Targeting Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27647-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27647-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27645-8

  • Online ISBN: 978-3-319-27647-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics