Monte Carlo Probabilistic Approach Applied for Solving Problems in Mining Engineering

  • K. FrydrýšekEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 423)


The conference paper presents some computational probabilistic solutions (i.e. direct Monte Carlo simulations and SBRA—Simulation-Based Reliability Assessment Method) applied in the branch of mining engineering. At first, the strength analysis of a bucket wheel excavator used in opencast mines for the extraction of overlying soils is solved. The assessment focuses on the arm of this particular excavator. Quasi-dynamic analysis using Finite Element Method (FEM) and measurement records of the dynamic load during the operation of a large machine can be used to derive statistical inputs (cyclic loading histograms) for probabilistic reliability assessment. At second, the solution of a hard rock (ore) disintegration process is solved (i.e. the bit moves into the ore and subsequently disintegrates it). The probabilistic results are compared with experiments and new design of excavation tool is proposed.


Simulation-based reliability assessment (SBRA) method Probabilistic reliability assessment Bucket wheel excavator Measurements Numerical methods Disintegration process 



This work has been supported by the Czech project SP2015/180.


  1. 1.
    Frydrýšek, K., Marek, P.: Probabilistic solution and reliability assessment of the hard rock disintegration process. In: Reliability, Risk and Safety: Theory and Applications, vols. 1–3, pp. 1443-1450. CRC Press–Taylor & Francis Group, Boca Raton, USA (2010). ISBN 978-0-415-55509-8Google Scholar
  2. 2.
    Frydrýšek, K., Pečenka, L.: Probabilistic evaluation of residual stresses for hole-drilling tests. Applied Mechanics and Materials, vol 684, pp. 400–406. Trans Tech Publications, Switzerland (2014). ISSN 1660-9336. doi: 10.4028/
  3. 3.
    Frydrýšek, K., Tvrdá, K., Jančo, R., et al.: Handbook of Structures on Elastic Foundation, pp. 1–1691. VŠB—Technical University of Ostrava, Ostrava, Czech Republic (2013). ISBN 978-80-248-3238-8Google Scholar
  4. 4.
    Gottvald, J., Kala, Z.: Sensitivity analysis of tangential digging forces of the bucket wheel excavator SCHRS 1320 for different terraces. J Civil Eng Manage 18(5), 609–620 (2012). doi: 10.3846/13923730.2012.719836 CrossRefGoogle Scholar
  5. 5.
    Grepl, J., Frydrýšek, K., Penhaker, M.: A probabilistic model of the interaction between a sitting man and a seat. In: Applied Mechanics and Materials, vol 684, pp. 413–419. Trans Tech Publications, Switzerland (2014). ISSN 1660-9336. doi: 10.4028/
  6. 6.
    Marek, P., Guštar, M., Anagnos, T., et al.: Simulation-Based Reliability Assessment for Structural Engineers, p. 365. CRC Press, Boca Raton, USA (1995). ISBN 0–8493-8286-6Google Scholar
  7. 7.
    Marek, P., Brozzetti, J., Guštar, M., Tikalsky, P., et al.: Probabilistic Assessment of Structures Using Monte Carlo Simulation Background, Exercises and Software, 2nd edn. ITAM CAS, Prague, Czech Republic (2003). ISBN ISBN 80-86246-19-1Google Scholar
  8. 8.
    Kala, Z.: Sensitivity analysis of steel plane frames with initial imperfections. Eng. Struct. 33(8), 2342–2349 (2011)CrossRefGoogle Scholar
  9. 9.
    Bošnjak, S.M., Petković, Z.D., Simonović, A.M., Zrnić, N.D., Gnjatović, N.B.: ‘Designing-in’ failures and redesign of bucket wheel excavator undercarriage. Eng. Fail. Anal. 35, 95–103 (2013). doi: 10.1016/j.engfailanal.2012.12.007 CrossRefGoogle Scholar
  10. 10.
    Gondek, H., Frydrýšek, K.: Determination of Remaining Life for Bucket Wheel Excavator K 10 000—Calculation Report, pp. 1–72. VSB—Technical University of Ostrava, Ostrava, Czech Republic (2013) (written in Czech)Google Scholar
  11. 11.
    Zhi-Wei, Y., Xiao-Lei, X., Xin, M.: Failure investigation on the cracked crawler pad link. Eng. Fail. Anal. 17, 1102–1109 (2010). doi: 10.1016/j.engfailanal.2010.01.004 CrossRefGoogle Scholar
  12. 12.
    Frydrýšek, K.: Probabilistic approaches applied in the solution of problems in mining and biomechanics. In: 17th International Conference on Engineering Mechanics Engineering Mechanics 2011, pp. 151–154, ISBN 978-80-87012-33-8, Svratka, Czech RepublicGoogle Scholar
  13. 13.
    Frydrýšek, K.: Probabilistic Calculations in Mechanics 1 (Pravděpodobnostní výpočty v mechanice 1) [CD-ROM]. VŠB—Technical University of Ostrava, Ostrava, Czech Republic (2010). ISBN 978-80-248-2314-0Google Scholar
  14. 14.
    Frydrýšek, K., Čada, R.: Probabilistic reliability assessment of femoral screws intended for treatment of “Collum Femoris” fractures. In: BIOMECHANICS 2014—International Conference of the Polish Society of Biomechanics, pp. 61–62. ISBN 978-83-7283-628-1, Łódź (2014)Google Scholar
  15. 15.
    Lokaj, A., Vavrušová, K., Rykalová, E.: Application of laboratory tests results of dowel joints in cement-splinter boards VELOX into the fully probabilistic methods (SBRA method). Applied Mechanics and Materials, vol 137, pp. 95–99 (2012). ISSN 1660-9336, doi: 10.4028/
  16. 16.
    Lokaj, A., Vavrušová, K.: Contribution to the probabilistic approach of the impact strength of wood. In: ENGINEERING MECHANICS 2011, pp. 363–366, Svratka, Czech Republic (2011). ISBN 978-80-87012-33-8Google Scholar
  17. 17.
    Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Eng. 32, 1205–1227 (1991) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Department of Applied MechanicsVSB—Technical University of OstravaOstravaCzech Republic

Personalised recommendations