Skip to main content

Conservation Laws on Riemann-Cartan and Lorentzian Spacetimes

  • Chapter
  • First Online:
The Many Faces of Maxwell, Dirac and Einstein Equations

Part of the book series: Lecture Notes in Physics ((LNP,volume 922))

  • 2303 Accesses

Abstract

In this chapter we examine in details the conditions for existence of conservation laws of energy-momentum and angular momentum for the matter fields of on a general Riemann-Cartan spacetime \((M,\boldsymbol{g},\nabla,\tau _{\boldsymbol{g}},\uparrow )\) and also in the particular case of Lorentzian spacetimes \(\mathfrak{M} = (M,\boldsymbol{g},D,\tau _{\boldsymbol{g}},\uparrow )\) which as we already know model gravitational fields in the GRT [3]. Riemann-Cartan spacetimes are supposed to model generalized gravitational fields in so called Riemann-Cartan theories. In what follows, we suppose that in \((M,\boldsymbol{g},\nabla,\tau _{\boldsymbol{g}},\uparrow )\) (or \(\mathfrak{M}\)) a set of dynamic fields live and interact. Of course, we want that the Riemann-Cartan spacetime admits spinor fields, and from what we learned in Chap. 7, this implies that the orthonormal frame bundle must be trivial. This permits a great simplification in our calculations. Moreover, we will suppose, for simplicity that the dynamic fields ϕ A, A = 1, 2, , n, are in general distinct r-forms, i.e., each \(\phi ^{A} \in \sec \bigwedge ^{r}T^{{\ast}}M\hookrightarrow \mathcal{C}\ell(M,\mathtt{g})\), for some r = 0, 1, , 4. Before we start our enterprise we think it is useful to recall some results which serve also the purpose to fix the notation for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is not a serious restriction in the formalism since we already learned how (given a spinorial frame) to represent spinor fields by sums of even multiform fields.

  2. 2.

    For the definition of jet bundles and notations see Sect. A.3.1.

  3. 3.

    We observe that some authors (e.g.,[1, 7, 11]) denote \(\frac{\partial F} {\partial X} - (-1)^{p}d\left ( \frac{\partial F} {\partial dX}\right )\) by \(\frac{\boldsymbol{\delta }F} {\boldsymbol{\delta }X}\), something we also did in the first edition of our book.

  4. 4.

    In this Chapter boldface latin indices, say a, take the values 0, 1, 2, 3. 

  5. 5.

    A Lagrangian density for the \(\{\theta ^{\mathbf{a}}\}\) for the case of GRT will be introduced in Sect. 8.5 and explored in details in the next Chapter.

  6. 6.

    We discuss further the issue of local Lorentz invariance and its hidden consequence in [5, 28].

  7. 7.

    For a derivation using \(\mathcal{L}_{g}\) see Exercise 9.18

  8. 8.

    Recall that from the previous section we learned that energy-momentum conservation law for the matter fields alone exist only when appropriated Killing vector fields exist.

  9. 9.

    More details on this issue may be found in [22].

  10. 10.

    In particular, on this issue the reader should read page 108 of Parrot’s book [23].

  11. 11.

    The reason for the factor 8π in Eq. (9.106) is that we choose units where the numerical value gravitational constant 8π Gc 4 is 1, where G is Newton gravitational constant.

  12. 12.

    See the details of the calculation, e.g., in [22]

  13. 13.

    This means that the t a are no in this case pseudo 1-forms, as in Einstein’s theory.

  14. 14.

    Note that if we suppose that the universe contains spinor fields, then it must be a spin manifold, i.e., it is parallelizable according to Geroch’s theorem [12, 13], as we already know from Chap. 5

  15. 15.

    A metric is said to be asymptotically flat in given coordinates, if \(g_{\mu \nu } = n_{\mu \nu }(1 +\mathrm{ O}\left (r^{-k}\right ))\), with k = 2 or k = 1 depending on the author. See, e.g., [30, 31, 39].

  16. 16.

    For a Schwarzschild spacetime we have \(g = \left (1 -\frac{2m} {r} \right )dt \otimes dt -\left (1 -\frac{2m} {r} \right )^{-1}dr \otimes dr - r^{2}(d\theta \otimes d\theta +\sin ^{2}\theta d\varphi \otimes d\varphi )\).

  17. 17.

    This observation is true even if we use the so called ADM formalism [2] to be presented in Chap. 11 To be more precise, let us recall that we have a well defined ADM energy only if the fall off rate of the metric is in the interval 1∕2 < k < 1. For details, see [20].

  18. 18.

    The proof also uses as hypothesis the so called energy dominance condition [14].

  19. 19.

    Like, e.g., in [1, 19, 24] and many other textbooks. It is worth to quote here that, at least, Anderson [1] explicitly said: “In an interaction that involves the gravitational field a system can loose energy without this energy being transmitted to the gravitational field.”

  20. 20.

    On this issue, see also [25].

  21. 21.

    Another presentation the theory of the gravitational field in Minkowski spacetime employing Clifford algebra techniques has been given in [15]. However, that work, which contains many interesting ideas, unfortunately contains also some equivocated statements that make (in our opinion) the theory, as originally presented by those authors invalid. This has been discussed with details in [9].

  22. 22.

    Recall that \(\lrcorner\) is an antiderivation.

References

  1. Anderson, J.L.: Principles of Relativity Physics. Academic, New York (1967)

    Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962) [gr-qc/0405109]

    Google Scholar 

  3. Benn, I.M.: Conservation laws in arbitrary space-times. Ann. Inst. HenriPoincaré. XXXVII, 67–91 (1982)

    Google Scholar 

  4. Bohzkov, Y., Rodrigues, W.A. Jr.: Mass and energy in general relativity. Gen. Relativ. Gravit. 27, 813–819 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. da Rocha, R., Rodrigues, W.A. Jr.: Diffeomorphism invariance and local Lorentz invariance. In: Proc. VII Int. Conf. Clifford Algebras and Their Applications. Adv. Appl. Clifford Algebras 18, 945–961 (2008) [math-ph/0510026]

    Google Scholar 

  6. Dalton, K.: Energy and momentum in general relativity. Gen. Relativ. Gravit. 21, 533–544 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Davis, W.R.: Classical Fields, Particles and the Theory of Relativity. Gordon and Breach, New York (1970)

    Google Scholar 

  8. de Andrade, V.C., Guillen, L.C.T., Pereira, J.G.: Gravitational energy-momentum density in teleparallel gravity. Phys. Rev. Lett. 84, 4533–4536 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fernández, V.V, Moya, A.M., Rodrigues, W.A. Jr.: Covariant derivatives on Minkowski manifolds. In: Ablamowicz, R., Fauser, B. (eds.) Clifford Algebras and Their Applications in Mathematical Physics (Ixtapa-Zihuatanejo, Mexico 1999), vol. 1. Algebra and Physics. Progress in Physics, vol. 18, pp. 373–398. Birkhäuser, Boston (2000)

    Google Scholar 

  10. Feynman, R.P., Morinigo, F.B., Wagner, W.G.: In: Hatfield, B. (ed.) Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995)

    Google Scholar 

  11. Frankel, T.: The Geometry of Physics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Geroch, R.: Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Geroch, R.: Spinor structure of space-times in general relativity. II. J. Math. Phys. 11, 343–348 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  15. Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebras. Philos. Trans. R. Soc. 356, 487–582 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Logunov, A.A.: Relativistic Theory of Gravity. Nova Science, New York (1999)

    MATH  Google Scholar 

  17. Logunov, A.A., Mestvirishvili, M.A.: The Relativistic Theory of Gravitation. Mir, Moscow (1989)

    Google Scholar 

  18. Maluf, J.W.: Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 35, 335–343 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Misner, C.M., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)

    Google Scholar 

  20. Murchada, N.O.: Total energy momentum in general relativity. J. Math. Phys. 27, 2111–2118 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nakahara, M.: Geometry, Topology and Physics. Institute of Physics, Bristol (1990)

    MATH  Google Scholar 

  22. Notte-Cuello, E., Rodrigues, W.A. Jr.: Freud’s identity of differential geometry, the Einstein-Hilbert equations and the vexatious problem of the energy-momentum conservation in GR. Advances in Applied Clifford Algebras 19, 113–145 (2009). arXiv:0801.2559v4 [math-ph]

    Google Scholar 

  23. Parrot, S.: Relativistic Electrodynamics and Differential Geometry. Springer, New York (1987)

    Book  Google Scholar 

  24. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Knopf, New York (2005)

    MATH  Google Scholar 

  25. Rodrigues, W.A. Jr.: The nature of the gravitational field and its legitimate energy-momentum tensor. Rep. Math. Phys. 69, 265–279 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Rodrigues, W.A. Jr., Souza, Q.A.G.: The Clifford bundle and the nature of the gravitational field. Found. Phys. 23, 1465–1490 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rodrigues, W.A. Jr., Wainer, S.A.: Notes on Conservation Laws, Equations of Motion of Matter and Particle Fields in Lorentzian and Teleparallel de Sitter Spacetime Structures. arXiv:1505.02935v3 [math-ph]

    Google Scholar 

  28. Rodrigues, W.A. Jr., da Rocha R., Vaz, J. Jr.: Hidden consequence of local Lorentz invariance. Int. J. Geom. Methods Mod. Phys. 2, 305–357 (2005) [math-ph/0501064]

    Google Scholar 

  29. Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)

    Book  MATH  Google Scholar 

  30. Schoen, R., Yau, S.T.: Proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Yau, S.T.: Proof of the positive mass theorem 2. Commun. Math. Phys. 79, 231–260 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Schwinger, J.: Particles, Sources and Fields, vol. 1. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  33. Thirring, W.: An alternative approach to the theory of gravitation. Ann. Phys. 16, 96–117 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Trautman, A.: On the Einstein-Cartan equations part. 1. Bull Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20, 185–190 (1972)

    Google Scholar 

  35. Trautman, A.: On the Einstein-Cartan equations part. 2. Bull Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20, 503–506 (1972)

    Google Scholar 

  36. Trautman, A.: On the Einstein-Cartan equations part. 3. Bull Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20, 895–896 (1972)

    Google Scholar 

  37. Trautman, A.: On the Einstein-Cartan equations part. 4. Bull Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 21, 345–346 (1973)

    Google Scholar 

  38. Vargas, J.G., Torr, D.G.: Conservation of vector-valued forms and the question of the existence of gravitational energy-momentum in general relativity. Gen. Relativ. Gravit. 23, 713–732 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  40. Weinberg, S.: Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations. Phys. Rev. B 138, 988–1002 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  41. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  42. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, W.A., Capelas de Oliveira, E. (2016). Conservation Laws on Riemann-Cartan and Lorentzian Spacetimes. In: The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-319-27637-3_9

Download citation

Publish with us

Policies and ethics