Skip to main content

Maxwell, Dirac and Seiberg-Witten Equations

  • Chapter
  • First Online:
The Many Faces of Maxwell, Dirac and Einstein Equations

Part of the book series: Lecture Notes in Physics ((LNP,volume 922))

Abstract

In this Chapter we discuss three important issues. The first is how \(\mathrm{i} = \sqrt{-1}\) makes its appearance in classical electrodynamics and in Dirac theory. This issue is important because if someone did not really know the real meaning uncovered by \(\mathrm{i} = \sqrt{-1}\) in these theories he may infers nonsequitur results. After that we present some ‘Dirac like’ representations of Maxwell equations. Within the Clifford bundle it becomes obvious why there are so many ‘Dirac like’ representations of Maxwell equations. The third issue discussed in this chapter are the mathematical Maxwell-Dirac equivalences of the first and second kinds and the relation of these mathematical equivalences with Seiberg-Witten equations in Minkowski spacetime \((M,\boldsymbol{\eta },D,\tau _{\boldsymbol{\eta }},\uparrow )\) which is the arena where we suppose physical phenomena to take place in this chapter. We denote by {x μ} coordinates in Einstein-Lorentz-Poincaré gauge associated to an inertial reference frame \(\boldsymbol{e}_{0} \in \sec TM\). Moreover \(\{\boldsymbol{e}_{\mu } = \frac{\partial } {\partial x^{\mu }}\} \in \sec TM,(\mu = 0,1,2,3)\) is an orthonormal basis, with \(\boldsymbol{\eta }(\boldsymbol{e}_{\mu },\boldsymbol{e}_{\nu }) =\eta _{\mu \nu } =\mathrm{ diag}(1,-1,-1,-1)\) and \(\{\gamma ^{\nu } = dx^{\nu }\} \in \sec \bigwedge ^{1}T^{{\ast}}M\hookrightarrow \sec \mathcal{C}\ell(M,\eta )\) is the dual basis of \(\{\boldsymbol{e}_{\mu }\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that \(\boldsymbol{\partial }^{(s)} =\boldsymbol{\varepsilon } ^{\mathbf{a}}\boldsymbol{\nabla }_{\mathbf{e}_{\mathbf{a}}}^{(s)}\) is the representative of the spin-Dirac operator in the Clifford bundle.

  2. 2.

    For the moment different helicities means that the vectors \(\vec{A}^{(i)}\) have opposite sense of rotation. We will be more precise later.

  3. 3.

    Recall that \(\mathcal{I}(M,\eta )\) is a bundle of amorphous spinor fields and it is not to be confused with the bundle I(M, η) (Definition 7.16) of algebraic spinor fields.

  4. 4.

    Spin\(_{3} \simeq \mathrm{ SU(2)}\).

  5. 5.

    Recall that \(\vec{\rho }\) is an unitary vector.

  6. 6.

    This is just what happened with the misleading \(\vec{B}^{(3)}\) theory presented in a series of books and inumerous articles, see e.g., [915].

  7. 7.

    In Silverman’s book his Eq. (34), pp.167 is the one that corresponds to our Eq. (13.32).

  8. 8.

    Of course, Silverman is referring to papers like, e.g., [915] and hundred of others by one author and his many associates. Some of the absurdities of those papers are discussed in [6].

  9. 9.

    The pair of Eq. (13.57) suggest the existence of new invariants for the electromagnetic fields, and indeed Sachs made interesting use of them in [37].

  10. 10.

    We are using s system of units such that c = 1. 

  11. 11.

    Of course, it is necessary for the quantum mechanical interpretation to multiply both sides of Eq. (13.66) by \(\hslash \), the Planck constant.

  12. 12.

    Indeed in quantum mechanics the Pauli matrices \(\boldsymbol{\sigma }_{i}\) and the matrices K i are the quantum mechanical spin operators and

    $$\displaystyle{\sum _{i=1}^{3}(\boldsymbol{\sigma }_{ i})^{2} = \frac{1} {2}(1 + \frac{1} {2}) = \frac{3} {4},\text{ }\sum _{i=1}^{3}(\mathbf{K}_{ i})^{2} = 1.(1 + 1) = 2.}$$

     .

  13. 13.

    Such solutions exist [32, 33, 35] and are investigated in details in a forthcoming book [8].

  14. 14.

    This object first appears for the best of our knowledge in [45].

  15. 15.

    The question of the physical dimensions of the Dirac-Hestenes and Maxwell fields is discussed in [36].

  16. 16.

    Lochak suggested that an equation equivalent to Eq. (13.174) describe massless monopoles of opposite ‘charges’.

References

  1. Campolattaro, A.A.: New spinor representation of Maxwell equations 1. generalities. Int. J. Theor. Phys. 19, 99–126 (1980)

    Google Scholar 

  2. Campolattaro, A. A.: New spinor representation of Maxwell equations 2. generalities. Int. J. Theor. Phys. 19, 127–138 (1980)

    Google Scholar 

  3. Campolattaro, A.A.: Generalized Maxwell equations and quantum mechanics 1. Dirac equation for the free electron. Int. J. Theor. Phys. 19, 141–155 (1980)

    MATH  Google Scholar 

  4. Campolattaro, A.A.: Generalized Maxwell equations and quantum mechanics 2. Generalized Dirac equation. Int. J. Theor. Phys. 19, 477–482 (1980)

    Article  MATH  Google Scholar 

  5. Campolattaro, A.A., From classical electrodynamics to relativistic quantum mechanics. In: Keller, J., Oziewicz, Z. (eds.): The Theory of the Electron. Advances in Applied Clifford Algebras 7(S), 167–173 (1997)

    Google Scholar 

  6. Carvalho, A.L.T., Rodrigues, W.A. Jr.: The non Sequitur mathematics and physics of the ‘new electrodynamics’ proposed by the AIAS group. Random Oper. Stochastic Equ. 9, 161–206 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Chown, M.: Double or quit. New Sci. 168, 24–27 (2000)

    Google Scholar 

  8. de Oliveira, E.C., Rodrigues, W.A. Jr.: Subluminal, Luminal and Superluminal Wave Motion (2016). Book in preparation

    Google Scholar 

  9. Evans, M.W.: The elementary static magnetic field of the photon. Phys. B 182, 227–236 (1992)

    Article  ADS  Google Scholar 

  10. Evans, M.W., Crowell, L.B.: Classical and Quantum Electrodynamics and the B(3) Field. World Science Publisher Co., Singapore (2000)

    MATH  Google Scholar 

  11. Evans, M.W., Vigier, J.P.: The Enigmatic Photon, Volume 1: The Field B(3). Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  12. Evans, M.W., Vigier, J.P.: The Enigmatic Photon, Volume 2: Non Abelian Electrodynamics. Kluwer Academic, Dordrecht (1995)

    Book  Google Scholar 

  13. Evans, M.W., Vigier, J.P.: The Enigmatic Photon, Volume 5: O(3) Electrodynamics. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  14. Evans, M.W., Vigier, J.P., Roy, S., Jeffers, S.: The Enigmatic Photon, Volume 3: Theory and Practice of the B(3) Field. Kluwer Academic, Dordrecht (1996)

    Book  Google Scholar 

  15. Evans, M.W., Vigier, J.P., Roy, S., Hunter, G.: The Enigmatic Photon, Volume 4: New Directions. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  16. Gsponer, A.: On the “equivalence” of Maxwell and Dirac equations. Int. J. Theor. Phys. 41, 689–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gursey, F.: Contribution to the quaternion formalism in special relativity. Rev. Fac. Sci. Istanbul A 20, 149–171 (1956)

    MathSciNet  Google Scholar 

  18. Hestenes, D.: Spacetime Algebra. Gordon and Breach Science Publishers, New York (1966)

    MATH  Google Scholar 

  19. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  20. Jauch, J.M., Rorlich, F.: The Theory of Photons and Electrons. Springer, Berlin (1976)

    Book  Google Scholar 

  21. Kurşunoğlu, B.: Modern Quantum Theory. W.H. Freeman and Co., San Francisco/London (1962)

    MATH  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th revised English edn. Pergamon, New York (1975)

    Google Scholar 

  23. Lochak, G.: Wave equation for a magnetic monopole. Int. J. Theor. Phys. 24, 1019–1050 (1985)

    Article  MathSciNet  Google Scholar 

  24. Maia, A. Jr., Recami, E., Rosa, M.A.F., Rodrigues, W.A. Jr.: Magnetic monopoles without string in the Kähler-Clifford algebra bundle. J. Math. Phys. 31, 502–505 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Majorana, E.: Teoria Relativistica di Particelle con Momento Intrinseco Arbitrario. N. Cimento 9, 335–344, (1932)

    Article  MATH  Google Scholar 

  26. Maris, H.: On the fission of elementary particles and evidence for fractional electrons in liquid helium. J. Low Temp. Phys. 120, 173–204 (2000)

    Article  ADS  Google Scholar 

  27. Naber, G.L.: Topology, Geometry and Gauge Fields. Interactions. Applied Mathematical Sciences, vol. 141. Springer, New York (2000)

    Google Scholar 

  28. Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic, London (1983)

    MATH  Google Scholar 

  29. Nicolescu, L.I.: Notes on Seiberg-Witten Theory. Graduate Studies in Mathematics, vol. 28. American Mathematical Society, Providence (2000)

    Google Scholar 

  30. Rainich, G.: Electrodynamics and general relativity theory. Am. Math. Soc. Trans. 27, 106–136 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rodrigues, W.A. Jr.: The relation between Dirac, Maxwell and Seiberg-Witten equations. Int. J. Math. Math. Sci. 2003, 2707–2734 (2003) [math-ph/0212034]

    Google Scholar 

  32. Rodrigues, W.A. Jr., Lu, J.Y.: On the existence of undistorted progressive waves (UPWs) of arbitrary speeds \(0 \leq v < \infty \) in nature. Found. Phys. 27, 435–508 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  33. Rodrigues, W.A. Jr., Maiorino, J. E.: A unified theory for construction of arbitrary speeds (\(0 \leq v < \infty \)) solutions of the relativistic wave equations. Random Oper. Stochastic Equ. 4, 355–400 (1996)

    MathSciNet  Google Scholar 

  34. Rodrigues, W.A. Jr., Tiomno, J.: On experiments to detect possible failures of relativity theory. Found. Phys. 15, 995–961 (1985)

    Article  MathSciNet  Google Scholar 

  35. Rodrigues, W.A. Jr., Vaz, J. Jr.: Subluminal and superluminal solutions in vacuum of the Maxwell equations and the massless Dirac equation. Talk presented at the International Conference on the Theory of the Electron. Mexico City (1995). Adv. Appl. Clifford Algebras7(Suppl.), 453–462 (1997)

    Google Scholar 

  36. Rodrigues, W.A. Jr., Vaz, J. Jr.: From electromagnetism to relativistic quantum mechanics. Found. Phys. 28, 789–814 (1998)

    Article  MathSciNet  Google Scholar 

  37. Sachs, M.: General Relativity and Matter. D. Reidel, Dordrecht (1982)

    Book  MATH  Google Scholar 

  38. Sallhöfer, H.: Elementary derivation of the Dirac equations. X. Z. Naturforsch. 41a, 468–470 (1986)

    Google Scholar 

  39. Sallhöfer, H.: Maxwell-Dirac-Isomorphism. XI. Z. Naturforsch. 41a, 1087–1088 (1986)

    Google Scholar 

  40. Sallhöfer, H.: Maxwell-Dirac-Isomorphism. XII. Z. Naturforsch. 41a, 1335–1336 (1986)

    Google Scholar 

  41. Sallhöfer, H.: Maxwell-Dirac-Isomorphism. XI. Z. Naturforsch. 41a, 1431–1432 (1986)

    Google Scholar 

  42. Silverman, M.P.: Waves and Grains. Princeton University Press, Princeton (1998)

    Google Scholar 

  43. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 QCD. Nucl. Phys. B 431, 581–640 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simulik, V.M., Krivisshi, I.Y.: Slight generalized Maxwell classical electrodynamics can be applied to interatomic phenomena. Ann. Fond. L. de Broglie 27, 303–328 (2002)

    Google Scholar 

  45. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  46. Vaz, J. Jr.: Clifford algebras and Witten’s monopole equations. In: Apanasov, B.N., Bradlow, S.B., Rodrigues, W.A. Jr., Uhlenbeck, K.K. (eds.) Geometry, Topology and Physics. W. de Gruyter, Berlin (1997)

    Google Scholar 

  47. Vaz, J. Jr., Rodrigues, W.A. Jr.: On the Equivalence of Maxwell and Dirac equations and quantum mechanics. Int. J. Theor. Phys. 32, 945–958 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vaz, J. Jr., Rodrigues, W.A. Jr.: Maxwell and Dirac theories as an already unified theory. Talk presented at the International Conference on the Theory of the Electron. Mexico City (1995). Adv. Appl. Clifford Algebras 7 (Suppl.), 369–386 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, W.A., Capelas de Oliveira, E. (2016). Maxwell, Dirac and Seiberg-Witten Equations. In: The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-319-27637-3_13

Download citation

Publish with us

Policies and ethics