Skip to main content

Minimal Invasive Surgery (MIS) for Lumbar Instability

  • Chapter
  • First Online:
Book cover Surgery of the Spine and Spinal Cord

Abstract

Open lumbar arthrodesis procedures require significant exposure of the spine, which may result in ischemic damage and subsequent atrophy of the paraspinal musculature, resulting in prolonged back pain. Terminology as to what should be considered a “minimally invasive” (or rather, less invasive) approach to the lumbar spine has been vigorously disputed since early attempts were made to reduce the clinically perceived impact of open lumbar fusion. In an effort to define the core characteristics of a less invasive approach to lumbar arthrodesis, a multinational panel of European spinal surgeons has recently stated “a muscle sparing surgical technique that, using an intermuscle or transmuscle splitting approach, minimizes the detachment of the lumbar fascia and of the paraspinal muscles, while addressing a spinal pathology and allowing placement of instrumentation,” may be considered less invasive (Fig. 34.1). In a mini-open technique, instruments are placed using direct vision of target structures via a less invasive muscle-sparing approach, whereas a percutaneous technique utilizes radiographic or navigation guidance to place instrumentation via stab incisions without direct vision of target structures. Therefore, in essence, emphasis is clearly put on soft tissue sparing and minimizing surgical complications as opposed to simply limiting the length of the skin incision. The ultimate goal of less invasive lumbar arthrodesis is improvement of overall treatment success rates by combining (a) reduction of intraoperative blood loss; (b) reduction of operative site pain, infection, and wound healing problems; (c) acceleration of postoperative recovery and expedited return to work; and (d) potential reduction of long-term sequelae of open arthrodesis such as adjacent segment disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawaguchi Y, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine (Phila Pa 1976) 21:941–944

    Article  CAS  Google Scholar 

  2. Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976) 18:575–581

    Article  CAS  Google Scholar 

  3. Spoor AB, Oner FC (2013) Minimally invasive spine surgery in chronic low back pain patients. J Neurosurg Sci 57:203–218

    CAS  PubMed  Google Scholar 

  4. Smith ZA, Fessler RG (2012) Paradigm changes in spine surgery: evolution of minimally invasive techniques. Nat Rev Neurol 8:443–450

    Article  PubMed  Google Scholar 

  5. Watkins R (1992) Anterior lumbar interbody fusion surgical complications. Clin Orthop Relat Res 284:47–53

    PubMed  Google Scholar 

  6. Weber BR, Grob D, Dvorak J, Muntener M (1997) Posterior surgical approach to the lumbar spine and its effect on the multifidus muscle. Spine (Phila Pa 1976) 22:1765–1772

    Article  CAS  Google Scholar 

  7. Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE (1968) The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 50:919–926

    CAS  PubMed  Google Scholar 

  8. Pereira P, Buzek D, Franke J, Senker W, Kosmala A, Hubbe U, Manson N, Rosenberg W, Assietti R, Martens F, Barbanti Brodano G, Scheufler K (2014) Surgical data and early postoperative outcomes after minimally invasive lumbar interbody fusion: results of a prospective, multicenter, observational data-monitored study. PLOS one 10(3):e0122312

    Google Scholar 

  9. Kim DH, Jaikumar S, Kam AC (2002) Minimally invasive spine instrumentation. Neurosurgery 51:S15–S25

    PubMed  Google Scholar 

  10. Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 22:691–699; discussion 700

    Article  CAS  Google Scholar 

  11. Raley DA, Mobbs RJ (2012) Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine: accuracy and complication rates. Spine (Phila Pa 1976) 37:1092–1100

    Article  Google Scholar 

  12. Sandhu F, Fessler R (2005) Minimally invasive transforaminal lumbar interbody fusion. In: Kim H, Fessler R, Regan J (eds) Endoscopic spine surgery and instrumentation. Thieme, New York, pp 265–280

    Google Scholar 

  13. Scheufler KM, Dohmen H, Vougioukas VI (2007) Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 60:203–212; discussion 212–203

    PubMed  Google Scholar 

  14. Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M (2014) Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid-Based Spine-Care J 5:28–37

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253

    Article  PubMed  Google Scholar 

  16. Dakwar E, Ahmadian A, Uribe JS (2012) The anatomical relationship of the diaphragm to the thoracolumbar junction during the minimally invasive lateral extracoelomic (retropleural/retroperitoneal) approach. J Neurosurg Spine 16:359–364

    Article  PubMed  Google Scholar 

  17. Davis TT, Hynes RA, Fung DA, Spann SW, MacMillan M, Kwon B, Liu J, Acosta F, Drochner TE (2014) Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 21:785–793

    Article  PubMed  Google Scholar 

  18. Elias WJ, Simmons NE, Kaptain GJ, Chadduck JB, Whitehill R (2000) Complications of posterior lumbar interbody fusion when using a titanium threaded cage device. J Neurosurg 93:45–52

    CAS  PubMed  Google Scholar 

  19. El Saghir H (2002) Extracoelomic mini approach for anterior reconstructive surgery of the thoracolumbar area. Neurosurgery 51:S118–S122

    PubMed  Google Scholar 

  20. Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L (1995) The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine (Phila Pa 1976) 20:1592–1599

    Article  CAS  Google Scholar 

  21. Flynn JC, Price CT (1984) Sexual complications of anterior fusion of the lumbar spine. Spine (Phila Pa 1976) 9:489–492

    Article  CAS  Google Scholar 

  22. Guiot BH, Khoo LT, Fessler RG (2002) A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976) 27:432–438

    Article  Google Scholar 

  23. Hee HT, Castro FP Jr, Majd ME, Holt RT, Myers L (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14:533–540

    Article  CAS  PubMed  Google Scholar 

  24. Isaacs RE, Podichetty VK, Santiago P, Sandhu FA, Spears J, Kelly K, Rice L, Fessler RG (2005) Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 3:98–105

    Article  PubMed  Google Scholar 

  25. Khoo LT, Palmer S, Laich DT, Fessler RG (2002) Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery 51:S166–S181

    PubMed  Google Scholar 

  26. Larson SJ, Holst RA, Hemmy DC, Sances A Jr (1976) Lateral extracavitary approach to traumatic lesions of the thoracic and lumbar spine. J Neurosurg 45:628–637

    Article  CAS  PubMed  Google Scholar 

  27. Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ (2011) Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg: MIN 54:33–37

    Article  CAS  PubMed  Google Scholar 

  28. McGirt MJ, Parker SL, Lerner J, Engelhart L, Knight T, Wang MY (2011) Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: analysis of hospital billing and discharge data from 5170 patients. J Neurosurg Spine 14:771–778

    Article  PubMed  Google Scholar 

  29. Scheufler KM, Cyron D, Dohmen H, Eckardt A (2010) Less invasive surgical correction of adult degenerative scoliosis. Part II: complications and clinical outcome. Neurosurgery 67:1609–1621; discussion 1621

    Article  PubMed  Google Scholar 

  30. Scheufler KM (2007) Technique and clinical results of minimally invasive reconstruction and stabilization of the thoracic and thoracolumbar spine with expandable cages and ventrolateral plate fixation. Neurosurgery 61:798–808; discussion 808–799

    Article  PubMed  Google Scholar 

  31. Mannion AF, Leivseth G, Brox JI, Fritzell P, Hagg O, Fairbank JC (2014) ISSLS prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine (Phila Pa 1976) 39:1373–1383

    Article  Google Scholar 

  32. Benglis DM, Elhammady MS, Levi AD, Vanni S (2008) Minimally invasive anterolateral approaches for the treatment of back pain and adult degenerative deformity. Neurosurgery 63:191–196

    Article  PubMed  Google Scholar 

  33. Bertagnoli R, Vazquez RJ (2003) The Anterolateral TransPsoatic Approach (ALPA): a new technique for implanting prosthetic disc-nucleus devices. J Spinal Disord Tech 16:398–404

    Article  PubMed  Google Scholar 

  34. Escobar E, Transfeldt E, Garvey T, Ogilvie J, Graber J, Schultz L (2003) Video-assisted versus open anterior lumbar spine fusion surgery: a comparison of four techniques and complications in 135 patients. Spine (Phila Pa 1976) 28:729–732

    Google Scholar 

  35. Foley KT, Gupta SK (2002) Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg 97:7–12

    PubMed  Google Scholar 

  36. Kossmann T, Jacobi D, Trentz O (2001) The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine. Eur Spine J 10:396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim JS, Kang BU, Lee SH, Jung B, Choi YG, Jeon SH, Lee HY (2009) Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech 22:114–121

    Article  PubMed  Google Scholar 

  38. Moskovich R, Benson D, Zhang ZH, Kabins M (1993) Extracoelomic approach to the spine. J Bone Joint Surg 75:886–893

    CAS  Google Scholar 

  39. Rosenberg WS, Mummaneni PV (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48:569–574; discussion 574–565

    Article  CAS  PubMed  Google Scholar 

  40. Regan JJ, Yuan H, McAfee PC (1999) Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine (Phila Pa 1976) 24:402–411

    Article  CAS  Google Scholar 

  41. Terman SW, Yee TJ, Lau D, Khan AA, La Marca F, Park P (2014) Minimally invasive versus open transforaminal lumbar interbody fusion: comparison of clinical outcomes among obese patients. J Neurosurg Spine 20:644–652

    Article  PubMed  Google Scholar 

  42. Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266

    Article  PubMed  Google Scholar 

  43. Uribe JS, Dakwar E, Cardona RF, Vale FL (2011) Minimally invasive lateral retropleural thoracolumbar approach: cadaveric feasibility study and report of 4 clinical cases. Neurosurgery 68:32–39; discussion 39

    PubMed  Google Scholar 

  44. Acosta FL, Liu J, Slimack N, Moller D, Fessler R, Koski T (2011) Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine 15:92–96

    Article  PubMed  Google Scholar 

  45. Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976) 25:1437–1446

    Article  CAS  Google Scholar 

  46. Castro C, Oliveira L, Amaral R, Marchi L, Pimenta L (2014) Is the lateral transpsoas approach feasible for the treatment of adult degenerative scoliosis? Clin Orthop Relat Res 472:1776–1783

    Article  PubMed  Google Scholar 

  47. Foley KT, Smith MM (1997) Microendoscopic discectomy. Tech Neurosurg 3:301–307

    Google Scholar 

  48. Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, Liu JC (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386

    Article  PubMed  Google Scholar 

  49. Lippman CR, Spence CA, Youssef AS, Cahill DW (2003) Correction of adult scoliosis via a posterior-only approach. Neurosurg Focus 14:e5

    Article  PubMed  Google Scholar 

  50. Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wellington R, Smith MM, Fessler RG (2002) Microendoscopic lumbar discectomy: technical note. Neurosurgery 51:S129–S136

    PubMed  Google Scholar 

  51. Rihn JA, Gandhi SD, Sheehan P, Vaccaro AR, Hilibrand AS, Albert TJ, Anderson DG (2014) Disc space preparation in transforaminal lumbar interbody fusion: a comparison of minimally invasive and open approaches. Clin Orthop Relat Res 472:1800–1805

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sears W (2005) Posterior lumbar interbody fusion for degenerative spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5:170–179

    Article  PubMed  Google Scholar 

  53. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28:E7

    Article  PubMed  Google Scholar 

  54. Lindley EM, McBeth ZL, Henry SE, Cooley R, Burger EL, Cain CM, Patel VV (2012) Retrograde ejaculation after anterior lumbar spine surgery. Spine (Phila Pa 1976) 37:1785–1789

    Article  Google Scholar 

  55. Tiusanen H, Seitsalo S, Osterman K, Soini J (1995) Retrograde ejaculation after anterior interbody lumbar fusion. Eur Spine J 4:339–342

    Article  CAS  PubMed  Google Scholar 

  56. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6:89–97

    Article  PubMed  PubMed Central  Google Scholar 

  57. St Clair S, Tan JS, Lieberman I (2012) Oblique lumbar interbody fixation: a biomechanical study in human spines. J Spinal Disord Tech 25:183–189

    Article  PubMed  Google Scholar 

  58. Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144

    Article  PubMed  Google Scholar 

  59. Dakwar E, Vale FL, Uribe JS (2011) Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine 14:290–295

    Article  PubMed  Google Scholar 

  60. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976) 35:S322–S330

    Article  Google Scholar 

  61. Regev GJ, Kim CW (2014) Safety and the anatomy of the retroperitoneal lateral corridor with respect to the minimally invasive lateral lumbar intervertebral fusion approach. Neurosurg Clin N Am 25:211–218

    Article  PubMed  Google Scholar 

  62. Alimi M, Hofstetter CP, Cong GT, Tsiouris AJ, James AR, Paulo D, Elowitz E, Hartl R (2014) Radiological and clinical outcomes following extreme lateral interbody fusion. J Neurosurg Spine 20:623–635

    Article  PubMed  Google Scholar 

  63. Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS (2010) Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine (Phila Pa 1976) 35:S338–S346

    Article  Google Scholar 

  64. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS (2013) Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine 18:289–297

    Article  PubMed  Google Scholar 

  65. Banagan K, Gelb D, Poelstra K, Ludwig S (2011) Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Spine (Phila Pa 1976) 36:E687–E691

    Article  Google Scholar 

  66. Sofianos DA, Briseno MR, Abrams J, Patel AA (2012) Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res 470:1621–1632

    Article  PubMed  Google Scholar 

  67. Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB, Covington LA (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine (Phila Pa 1976) 26:567–571

    Article  CAS  Google Scholar 

  68. Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–S6

    Article  PubMed  Google Scholar 

  69. Mehta VA, McGirt MJ, Garces Ambrossi GL, Parker SL, Sciubba DM, Bydon A, Wolinsky JP, Gokaslan ZL, Witham TF (2011) Trans-foraminal versus posterior lumbar interbody fusion: comparison of surgical morbidity. Neurol Res 33:38–42

    Article  PubMed  Google Scholar 

  70. Kim JS, Lee KY, Lee SH, Lee HY (2010) Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis? J Neurosurg Spine 12:171–177

    Article  PubMed  Google Scholar 

  71. Singh K, Nandyala SV, Marquez-Lara A, Fineberg SJ, Oglesby M, Pelton MA, Andersson GB, Isayeva D, Jegier BJ, Phillips FM (2014) A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J 14:1694–1701

    Article  PubMed  Google Scholar 

  72. Ahmad FU, Wang MY (2014) Use of anteroposterior view fluoroscopy for targeting percutaneous pedicle screws in cases of spinal deformity with axial rotation. J Neurosurg Spine 21:826–832

    Article  PubMed  Google Scholar 

  73. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery 69:1307–1316

    Article  PubMed  Google Scholar 

  74. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, part I: cervicothoracic spine. Neurosurgery 69:782–795; discussion 795

    Article  PubMed  Google Scholar 

  75. Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the o-arm imaging system and StealthStation navigation. Spine (Phila Pa 1976) 37:E1580–E1587

    Article  Google Scholar 

  76. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255

    Article  PubMed  Google Scholar 

  77. Nandyala SV, Fineberg SJ, Pelton M, Singh K (2014) Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J 14:1460–1465

    Article  PubMed  Google Scholar 

  78. Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 22:654–660

    Article  PubMed  Google Scholar 

  79. Boden SD, Andersson GB, Fraser RD, Garfin SR, Goel VK, Hanley EN Jr, Katz JN, Pope MH, Sonntag VK, Spratt KF et al (1995) Selection of the optimal procedure to achieve lumbar spinal fusion. Introduction. 1995 Focus Issue Meeting on Fusion. Spine (Phila Pa 1976) 20:166S

    Article  CAS  Google Scholar 

  80. Lee KH, Yeo W, Soeharno H, Yue WM (2014) Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). J Spinal Disord Tech 27:E234–E240

    Article  PubMed  Google Scholar 

  81. Sclafani JA, Kim CW (2014) Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 472:1711–1717

    Article  PubMed  PubMed Central  Google Scholar 

  82. Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson AN, Blood EA, Birkmeyer NJ, Hilibrand AS, Herkowitz H, Cammisa FP, Albert TJ, Emery SE, Lenke LG, Abdu WA, Longley M, Errico TJ, Hu SS (2007) Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med 356:2257–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carreon LY, Glassman SD, Howard J (2008) Fusion and nonsurgical treatment for symptomatic lumbar degenerative disease: a systematic review of Oswestry Disability Index and MOS Short Form-36 outcomes. Spine J 8:747–755

    Article  PubMed  Google Scholar 

  84. Fritzell P, Hagg O, Wessberg P, Nordwall A (2001) 2001 Volvo Award Winner in Clinical Studies: lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine 26:2521–2532; discussion 2532–2524

    Article  CAS  PubMed  Google Scholar 

  85. Mirza SK, Deyo RA, Heagerty PJ, Turner JA, Martin BI, Comstock BA (2013) One-year outcomes of surgical versus nonsurgical treatments for discogenic back pain: a community-based prospective cohort study. Spine J 13:1421–1433

    Article  PubMed  PubMed Central  Google Scholar 

  86. Radcliff K, Curry P, Hilibrand A, Kepler C, Lurie J, Zhao W, Albert TJ, Weinstein J (2013) Risk for adjacent segment and same segment reoperation after surgery for lumbar stenosis: a subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 38:531–539

    Article  Google Scholar 

  87. Scheufler KM, Cyron D, Dohmen H, Eckardt A (2010) Less invasive surgical correction of adult degenerative scoliosis, part I: technique and radiographic results. Neurosurgery 67:696–710

    Article  PubMed  Google Scholar 

  88. Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ (2011) Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech 24:479–484

    PubMed  Google Scholar 

  89. Peng CW, Yue WM, Poh SY, Yeo W, Tan SB (2009) Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 34:1385–1389

    Article  Google Scholar 

  90. Rouben D, Casnellie M, Ferguson M (2011) Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. J Spinal Disord Tech 24:288–296

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Michael Scheufler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scheufler, KM., Diesing, D. (2016). Minimal Invasive Surgery (MIS) for Lumbar Instability. In: van de Kelft, E. (eds) Surgery of the Spine and Spinal Cord. Springer, Cham. https://doi.org/10.1007/978-3-319-27613-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27613-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27611-3

  • Online ISBN: 978-3-319-27613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics