Skip to main content

HPV and EBV in Head and Neck Cancer

  • Chapter
  • First Online:
  • 2505 Accesses

Abstract

The focus of this book chapter is to discuss the role of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) and Epstein–Barr virus (EBV) in nasopharyngeal carcinoma (NPC). We have summarized the main events of HPV and EBV life cycle, potential mechanisms of HPV- or EBV-mediated carcinogenesis, and the implications of HPV and EBV in head and neck cancer, with an emphasis on disease diagnosis, prognosis, and therapeutic treatment. The potential of proteomics and metabolomics for studying these virus-associated cancers has also been discussed. A mechanistic understanding of HPV-associated HNSCC or EBV-associated NPC would require profound analysis of these tumors using advanced molecular analysis technologies, which will facilitate the development of preventive and therapeutic strategies for these diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay J, Bray F, Pisani P, Parkin DM. Globocan 2002: cancer incidence and mortality worldwide. IARC/WHO CancerBase no. 5, version 2.0, Lyon, France. 2004.

    Google Scholar 

  2. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.

    Article  CAS  PubMed  Google Scholar 

  3. Gillison ML, Shah KV. Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol. 2001;13:183–8.

    Article  CAS  PubMed  Google Scholar 

  4. Renwei C, Leena-Maija A, Antti V. Human papillomavirus type 16 in head and neck carcinogenesis. Rev Med Virol. 2005;15:351–63.

    Article  CAS  Google Scholar 

  5. Shope RE, Hurst EW. Infectious papillomatosis of rabbits: with a note on the histopathology. J Exp Med. 1933;58:607–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ha PK, Califano JA. The role of human papillomavirus in oral carcinogenesis. Crit Rev Oral Biol Med. 2004;15:188–96.

    Article  PubMed  Google Scholar 

  7. Psyrri A, DiMaio D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol. 2008;5:24–31.

    Article  CAS  PubMed  Google Scholar 

  8. Bernard H-U, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers E-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401:70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rampias T, Sasaki C, Psyrri A. Molecular mechanisms of HPV induced carcinogenesis in head and neck. Oral Oncol. 2014;50:356–63.

    Article  CAS  PubMed  Google Scholar 

  10. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol. 2006;24:2606–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Devaraj K, Gillison ML, Wu TC. Development of HPV vaccines for HPV-associated head and neck squamous cell carcinoma. Crit Rev Oral Biol Med. 2003;14:345–62.

    Article  PubMed  Google Scholar 

  12. Steinberg B, Auborn K. Papillomaviruses in head and neck disease: pathophysiology and possible regulation. J Cell Biochem Suppl. 1993;17F:155–64.

    Article  CAS  PubMed  Google Scholar 

  13. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.

    Article  CAS  PubMed  Google Scholar 

  14. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    Article  CAS  PubMed  Google Scholar 

  15. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman JM, Stavas MJ, Cmelak AJ. Clinical and scientific impact of human papillomavirus on head and neck cancer. World J Clin Oncol. 2014;5:781–91.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ferris RL, Martinez I, Sirianni N, Wang J, López-Albaitero A, Gollin SM, et al. Human papillomavirus-16 associated squamous cell carcinoma of the head and neck (SCCHN): a natural disease model provides insights into viral carcinogenesis. Eur J Cancer. 2005;41:807–15.

    Article  CAS  PubMed  Google Scholar 

  18. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56:4620–4.

    CAS  PubMed  Google Scholar 

  19. Münger K, Howley P, DiMaio D. Human papillomavirus E6 and E7 oncogenes. In: Garcea R, DiMaio D, editors. The papillomaviruses. New York, NY: Springer; 2007. p. 197–252.

    Chapter  Google Scholar 

  20. zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta. 1996;1288:F55–78.

    PubMed  Google Scholar 

  21. Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, Rocco JW, Teknos TN, Kumar B, Wangsa D, He D, Ried T, Symer DE, Gillison ML. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24:185–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ming Z, Eli R, Andre Lopes C, Wayne K, WeiWen J, David S, et al. Feasibility of quantitative PCR-based saliva rinse screening of HPV for head and neck cancer. Int J Cancer. 2005;117:605–10.

    Article  CAS  Google Scholar 

  23. Fakhry C, Gillison ML, D’Souza G. Tobacco use and oral HPV-16 infection. JAMA. 2014;312:1465–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. D’Souza G, Gross ND, Pai SI, Haddad R, Anderson KS, Rajan S, Gerber J, Gillison ML, Posner MR. Oral human papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners. J Clin Oncol. 2014;32:2408–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gillison ML, Lowy DR. A causal role for human papillomavirus in head and neck cancer. Lancet. 2004;363:1488–9.

    Article  CAS  PubMed  Google Scholar 

  26. Herrero R. Chapter 7: Human papillomavirus and cancer of the upper aerodigestive tract. J Natl Cancer Inst Monogr. 2003;2003:47–51.

    Article  Google Scholar 

  27. Jose VB, Yolanda J, Judith M, et al. Lack of association between proliferative verrucous leukoplakia and human papillomavirus infection. J Oral Maxillofac Surg. 2007;65:46–9.

    Article  Google Scholar 

  28. Fouret P, Dabit D, Sibony M, Alili D, Commo F, Saint-Guily JL, et al. Expression of p53 protein related to the presence of human papillomavirus infection in precancer lesions of the larynx. Am J Pathol. 1995;146:599–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ha PK, Pai SI, Westra WH, Gillison ML, Tong BC, Sidransky D, et al. Real-time quantitative PCR demonstrates low prevalence of human papillomavirus type 16 in premalignant and malignant lesions of the oral cavity. Clin Cancer Res. 2002;8:1203–9.

    CAS  PubMed  Google Scholar 

  30. Bouda M, Gorgoulis VG, Kastrinakis NG, et al. High risk HPV types are frequently detected in potentially malignant and malignant oral lesions, but not in normal oral mucosa. Mod Pathol. 2000;13:644–53.

    Article  CAS  PubMed  Google Scholar 

  31. Messadi DV. Diagnostic aids for detection of oral precancerous conditions. Int J Oral Sci. 2013;5:59–65.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24:S1–10.

    Article  CAS  Google Scholar 

  33. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31:4550–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev. 2005;14:467–75.

    Article  CAS  PubMed  Google Scholar 

  35. Campisi G, Giovannelli L. Controversies surrounding human papilloma virus infection, head & neck vs. oral cancer, implications for prophylaxis and treatment. Head Neck Oncol. 2009;1:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–56.

    Article  PubMed  Google Scholar 

  37. Klussmann JP, Gultekin E, Weissenborn SJ, et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol. 2003;162:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. IARC. Human papillomaviruses. IARC Monogr. 2007;90:255–314.

    Google Scholar 

  39. Slebos RJC, Yi Y, Ely K, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:701–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yang H, Yang K, Khafagi A, et al. Sensitive detection of human papillomavirus in cervical, head/neck, and schistosomiasis-associated bladder malignancies. Proc Natl Acad Sci U S A. 2005;102:7683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  CAS  PubMed  Google Scholar 

  42. Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.

    Article  CAS  PubMed  Google Scholar 

  43. Chung CH, Bagheri A, D’Souza G. Epidemiology of oral human papillomavirus infection. Oral Oncol. 2014;50:364–9.

    Article  PubMed  Google Scholar 

  44. Chung CH, Zhang Q, Kong CS, Harris J, Fertig EJ, Harari PM, Wang D, Redmond KP, Shenouda G, Trotti A, Raben D, Gillison ML, Jordan RC, Le QT. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 2014;32:3930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei L, Carol HT, Christopher JOB, et al. Human papillomavirus positivity predicts favourable outcome for squamous carcinoma of the tonsil. Int J Cancer. 2003;106:553–8.

    Article  CAS  Google Scholar 

  46. Hanna M, Signe F, Rolf L, Tina D, Eva M-W. Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. Int J Cancer. 2000;89:300–4.

    Article  Google Scholar 

  47. Harriet CH, Manni JJ, Haesevoets A, et al. Marked differences in survival rate between smokers and nonsmokers with HPV 16-associated tonsillar carcinomas. Int J Cancer. 2008;122:2656–64.

    Article  CAS  Google Scholar 

  48. Weinberger PM, Yu Z, Haffty BG, et al. Molecular classification identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable prognosis. J Clin Oncol. 2006;24:736–47.

    Article  CAS  PubMed  Google Scholar 

  49. Benson E, Li R, Eisele D, Fakhry C. The clinical impact of HPV tumor status upon head and neck squamous cell carcinomas. Oral Oncol. 2014;50:565–74.

    Article  PubMed  Google Scholar 

  50. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W, Liu L, Lynch CF, Wentzensen N, Jordan RC, Altekruse S, Anderson WF, Rosenberg PS, Gillison ML. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wittekindt C, Wagner S, Mayer CS, Klussmann JP. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. Curr Top Otorhinolaryngol Head Neck Surg. 2012;11:1–29.

    Google Scholar 

  53. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26:612–9.

    Article  PubMed  Google Scholar 

  54. Corvò R. Evidence-based radiation oncology in head and neck squamous cell carcinoma. Radiother Oncol. 2007;85:156–70.

    Article  PubMed  Google Scholar 

  55. Sirianni N, Wang J, Ferris RL. Antiviral activity of Cidofovir on a naturally human papillomavirus-16 infected squamous cell carcinoma of the head and neck (SCCHN) cell line improves radiation sensitivity. Oral Oncol. 2005;41:423–8.

    Article  CAS  PubMed  Google Scholar 

  56. Albers A, Abe K, Hunt J, et al. Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 2005;65:11146–55.

    Article  CAS  PubMed  Google Scholar 

  57. Sirianni N, Ha PK, Oelke M, et al. Effect of human papillomavirus-16 infection on CD8+ T-cell recognition of a wild-type sequence p53 264–272 peptide in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10:6929–37.

    Article  CAS  PubMed  Google Scholar 

  58. Epstein M. The 1986 Walter Hubert lecture. Recent studies on a vaccine to prevent EB virus-associated cancers. Br J Cancer. 1986;54:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chou J, Lin Y-C, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma – review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30:946–63.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Junker AK. Epstein-Barr virus. Pediatr Rev. 2005;26:79–85.

    Article  PubMed  Google Scholar 

  61. Pattle SB, Farrell PJ. The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther. 2006;6:1193–205.

    Article  CAS  PubMed  Google Scholar 

  62. Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol. 2002;12:431–41.

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43:831–40.

    Article  CAS  PubMed  Google Scholar 

  64. Laux G, Perricaudet M, Farrell PJ. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 1988;7:769–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sample J, Hummel M, Braun D, Birkenbach M, Kieff E. Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci U S A. 1986;83:5096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985;313:812–5.

    Article  CAS  PubMed  Google Scholar 

  67. Arrand JR, Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J Virol. 1982;41:376–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Swaminathan S, Tomkinson B, Kieff E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci U S A. 1991;88:1546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22:5108–21.

    Article  CAS  PubMed  Google Scholar 

  70. Murray PG, Young LS. Epstein-Barr virus infection: basis of malignancy and potential for therapy. Expert Rev Mol Med. 2001;3:1–20.

    Article  CAS  PubMed  Google Scholar 

  71. Liu J-P, Cassar L, Pinto A, Li H. Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res. 2006;16:809–17.

    Article  CAS  PubMed  Google Scholar 

  72. Seto E, Ooka T, Middeldorp J, Takada K. Reconstitution of nasopharyngeal carcinoma-Type EBV infection induces tumorigenicity. Cancer Res. 2008;68:1030–6.

    Article  CAS  PubMed  Google Scholar 

  73. Tsuchiya S. Diagnosis of Epstein-Barr virus-associated diseases. Crit Rev Oncol Hematol. 2002;44:227–38.

    Article  PubMed  Google Scholar 

  74. Tsang CM, Zhang G, Seto E, Takada K, Deng W, Yip YL, Man C, Hau PM, Chen H, Cao Y, Lo KW, Middeldorp JM, Cheung ALM, Tsao SW. Epstein-Barr virus infection in immortalized nasopharyngeal epithelial cells: regulation of infection and phenotypic characterization. Int J Cancer. 2010;127:1570–83.

    Article  CAS  PubMed  Google Scholar 

  75. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333:693–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yeung WM, Zong YS, Chiu CT, Chan KH, Jonathan STS, Damon TKC, et al. Epstein-Barr virus carriage by nasopharyngeal carcinoma in situ. Int J Cancer. 1993;53:746–50.

    Article  CAS  PubMed  Google Scholar 

  77. Lo K-W, Teo PML, Hui AB-Y, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000;60:3348–53.

    CAS  PubMed  Google Scholar 

  78. Henle W, Henle G, Zajac BA, Pearson G, Waubke R, Scriba M. Differential reactivity of human serums with early antigens induced by Epstein-Barr virus. Science. 1970;169:188–90.

    Article  CAS  PubMed  Google Scholar 

  79. Hepeng J, Zeng YI. Profile: a controversial bid to thwart the ‘Cantonese Cancer’. Science. 2008;321:1154–5.

    Article  CAS  PubMed  Google Scholar 

  80. Xiuchan G, Randall CJ, Hong D, et al. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China. Int J Cancer. 2009;124:2942–7.

    Article  CAS  Google Scholar 

  81. Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 2004;64:5251–60.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10:803–21.

    Article  CAS  PubMed  Google Scholar 

  83. Pagano JS, Blaser M, Buendia M-A, Damania B, Khalili K, Raab-Traub N, et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol. 2004;14:453–71.

    Article  CAS  PubMed  Google Scholar 

  84. Feng B-J, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet. 2002;31:395–9.

    CAS  PubMed  Google Scholar 

  85. Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Chan WY. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol. 1997;150:1745–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Young LS, Dawson CW, Brown KW, Rickinson AB. Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. Int J Cancer. 1989;43:786–94.

    Article  CAS  PubMed  Google Scholar 

  87. Bejarano MT, Masucci MG. Interleukin-10 abrogates the inhibition of Epstein-Barr virus-induced B-cell transformation by memory T-cell responses. Blood. 1998;92:4256–62.

    CAS  PubMed  Google Scholar 

  88. Huang Y-T, Sheen T-S, Chen C-L, Lu J, Chang Y, Chen J-Y, et al. Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res. 1999;59:1599–605.

    CAS  PubMed  Google Scholar 

  89. Lu Q-L, Elia G, Lucas S, Thomas JA. Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer. 1993;53:29–35.

    Article  CAS  PubMed  Google Scholar 

  90. Wei W, Sham J. Nasopharyngeal carcinoma. Lancet. 2005;365:2041–54.

    Article  PubMed  Google Scholar 

  91. Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001;3:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spano J-P, Busson P, Atlan D, Bourhis J, Pignon J-P, Esteban C, et al. Nasopharyngeal carcinomas: an update. Eur J Cancer. 2003;39:2121–35.

    Article  PubMed  Google Scholar 

  93. Nakao K, Mochiki M, Nibu K-I, Sugasawa M, Uozaki H. Analysis of prognostic factors of nasopharyngeal carcinoma: impact of in situ hybridization for Epstein-Barr virus encoded small RNA 1. Otolaryngol Head Neck Surg. 2006;134:639–45.

    Article  PubMed  Google Scholar 

  94. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47:883–9.

    Article  CAS  PubMed  Google Scholar 

  95. Lo YMD, Chan ATC, Chan LYS, Leung S-F, Lam C-W, Huang DP, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.

    CAS  PubMed  Google Scholar 

  96. Fan H, Gulley ML. Epstein-Barr viral load measurement as a marker of EBV-related disease. Mol Diagn. 2001;6:279–89.

    Article  CAS  PubMed  Google Scholar 

  97. Hsu JL, Glaser SL. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit Rev Oncol Hematol. 2000;34:27–53.

    Article  CAS  PubMed  Google Scholar 

  98. Stevens SJC, Verkuijlen SAWM, Hariwiyanto B, Harijadi, Paramita DK, Fachiroh J, Adham M, Tan IB, Haryana SM, Middeldorp JM. Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer. 2006;119:608–14.

    Google Scholar 

  99. Zhou X, Cui J, Macias V, Kajdacsy-Balla AA, Ye H, Wang J, et al. The progress on genetic analysis of nasopharyngeal carcinoma. Comp Funct Genom. 2007;2007:1–13.

    Article  Google Scholar 

  100. Comoli P, Pedrazzoli P, Maccario R, et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 2005;23:8942–9.

    Article  CAS  PubMed  Google Scholar 

  101. Lin C-L, Lo W-F, Lee T-H, et al. Immunization with Epstein-Barr virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res. 2002;62:6952–8.

    CAS  PubMed  Google Scholar 

  102. Fandi A, Bachouchi M, Azli N, et al. Long-term disease-free survivors in metastatic undifferentiated carcinoma of nasopharyngeal type. J Clin Oncol. 2000;18:1324–30.

    CAS  PubMed  Google Scholar 

  103. Lin J-C, Chen KY, Wang W-Y, Jan J-S, Liang W-M, Tsai C-S, et al. Detection of Epstein-Barr virus DNA in the peripheral-blood cells of patients with nasopharyngeal carcinoma: relationship to distant metastasis and survival. J Clin Oncol. 2001;19:2607–15.

    CAS  PubMed  Google Scholar 

  104. Lo YMD, Chan LYS, Lo K-W, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59:1188–91.

    CAS  PubMed  Google Scholar 

  105. Tabuchi K, Nakayama M, Nishimura B, Hayashi K, Hara A. Early detection of nasopharyngeal carcinoma. Int J Otolaryngol. 2011;1:1–6.

    Article  Google Scholar 

  106. Feng W-H, Kenney SC. Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res. 2006;66:8762–9.

    Article  CAS  PubMed  Google Scholar 

  107. Li J-H, Chia M, Shi W, Ngo D, Strathdee CA, Huang D, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res. 2002;62:171–8.

    CAS  PubMed  Google Scholar 

  108. Feng W-H, Israel B, Raab-Traub N, Busson P, Kenney SC. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 2002;62:1920–6.

    CAS  PubMed  Google Scholar 

  109. Spring SB, Hascall G, Gruber J. Issues related to development of Epstein-Barr virus vaccines. J Natl Cancer Inst. 1996;88:1436–41.

    Article  CAS  PubMed  Google Scholar 

  110. Duraiswamy J, Bharadwaj M, Tellam J, et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res. 2004;64:1483–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kyung-Ae L, Jung-Hyun S, Chang Won K, et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics. 2004;4:839–48.

    Article  CAS  Google Scholar 

  112. Lee K-A, Kang J-W, Shim J-H, et al. Protein profiling and identification of modulators regulated by human papillomavirus 16 E7 oncogene in HaCaT keratinocytes by proteomics. Gynecol Oncol. 2005;99:142–52.

    Article  CAS  PubMed  Google Scholar 

  113. Yim E-K, Meoyng J, Namakoong S-E, Um S-J, Park J-S. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol. 2004;23:826–35.

    Article  CAS  PubMed  Google Scholar 

  114. Huh K-W, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Münger K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A. 2005;102:11492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Christian M, Günther E, Robert W, Bettina S, Jens Peter K, Claus W, et al. Proteomic analysis of human papillomavirus-related oral squamous cell carcinoma: identification of thioredoxin and epidermal-fatty acid binding protein as upregulated protein markers in microdissected tumor tissue. Proteomics. 2009;9:2193–201.

    Article  CAS  Google Scholar 

  116. Lo W-Y, Lai C-C, Hua C-H, Tsai M-H, Huang S-Y, Tsai C-H, et al. S100A8 is identified as a biomarker of HPV18-infected oral squamous cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry staining. J Proteome Res. 2007;6:2143–51.

    Article  CAS  PubMed  Google Scholar 

  117. Kong L, Yu X-P, Bai X-H, et al. RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. J Biol Chem. 2007;282:26381–91.

    Article  CAS  PubMed  Google Scholar 

  118. Guerrera IC, Quetier I, Fetouchi R, Moreau F, Vauloup-Fellous C, Lekbaby B, Rousselot C, Chhuon C, Edelman A, Lefevre M, Nicolas JC, Kremsdorf D, Lacau Saint Guily J, Soussan P. Regulation of interleukin-6 in head and neck squamous cell carcinoma is related to papillomavirus infection. J Proteome Res. 2014;13:1002–11.

    Article  CAS  PubMed  Google Scholar 

  119. Slebos RJ, Jehmlich N, Brown B, Yin Z, Chung CH, Yarbrough WG, Liebler DC. Proteomic analysis of oropharyngeal carcinomas reveals novel HPV-associated biological pathways. Int J Cancer. 2013;132:568–79.

    Article  CAS  PubMed  Google Scholar 

  120. Cho W. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yan G, Li L, Tao Y, et al. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein-1 using functional proteomics technology. Proteomics. 2006;6:1810–21.

    Article  CAS  PubMed  Google Scholar 

  122. Yan G, Luo W, Lu Z, et al. Epstein-Barr virus latent membrane protein 1 mediates phosphorylation and nuclear translocation of annexin A2 by activating PKC pathway. Cell Signal. 2007;19:341–8.

    Article  CAS  PubMed  Google Scholar 

  123. Schlee M, Krug T, Gires O, et al. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol. 2004;78:3941–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yokoyama A, Tanaka M, Matsuda G, et al. Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol. 2001;75:5119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shkoda A, Town JA, Griese J, Romio M, Sarioglu H, Knöfel T, Giehler F, Kieser A. The germinal center kinase TNIK is required for canonical NF-κB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol. 2012;10, e1001376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Principe S, Hui AB, Bruce J, Sinha A, Liu FF, Kislinger T. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013;13:1608–23.

    Article  CAS  PubMed  Google Scholar 

  127. Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer (Oxford). 2007;43:415–32.

    Article  CAS  Google Scholar 

  128. Misuno K, Liu X, Feng S, Hu S. Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells. Stem Cell Res Therapy. 2013;4:156.

    Article  CAS  Google Scholar 

  129. Wang J, Christison TT, Misuno K, Lopez L, Huhmer AF, Huang Y, Hu S. Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with orbitrap mass spectrometry. Anal Chem. 2014;86:5116–24.

    Article  CAS  PubMed  Google Scholar 

  130. Hu S, Wang J, Ji EH, Christison T, Lopez L, Huang Y. Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q exactive HF mass spectrometer. Anal Chem. 2015;87(12):6371–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Hu PhD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brumbaugh, J., Ferris, R.L., Hu, S. (2016). HPV and EBV in Head and Neck Cancer. In: Bernier, J. (eds) Head and Neck Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27601-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27601-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27599-4

  • Online ISBN: 978-3-319-27601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics