Skip to main content

Biomarkers in Head and Neck Cancer

  • Chapter
  • First Online:
Head and Neck Cancer

Abstract

Biomarker research provides the opportunity to risk stratify patients based on identified prognostic and predictive markers. The need for such biomarkers is evident to improve response and survival outcomes in head and neck cancer through more rational patient selection for intensive curative regimens as well as palliative treatments. Advances in our understanding of genomics, epigenetics, and immunology of head and neck cancer are accelerating the discovery of new biomarkers. With the increasing availability of molecularly targeted therapeutics, it is very important to identify and validate biomarkers in the appropriate clinical setting to translate the advances into improved clinical outcome. This chapter focuses on human papillomavirus (HPV) status as a validated prognostic biomarker and discusses emerging prognostic and/or predictive biomarkers with potential for testing through prospective clinical trials. The availability of validated diagnostic assays and required multi-institutional trials for selected patients presents logistical challenges in biomarker research for head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Cancer Institute. Biomarker. NCI Dictionary of Cancer Terms 2014. Available from http://www.cancer.gov/dictionary?cdrid=45618. Accessed 5 Mar 2014.

  2. Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26.

    Article  PubMed  Google Scholar 

  3. Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seiwert TY, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41.

    Article  CAS  PubMed  Google Scholar 

  7. Hayes DN, Grandis JR, El-Naggar A. The Cancer Genome Atlas: integrated analysis of genome alterations in squamous cell carcinoma of the head and neck [abstract]. J Clin Oncol. 2013;31(Suppl):a6009.

    Google Scholar 

  8. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.

    Article  CAS  PubMed  Google Scholar 

  9. Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009;15(22):6758–62.

    Article  CAS  PubMed  Google Scholar 

  10. Bosch FX, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87(11):796–802.

    Article  CAS  PubMed  Google Scholar 

  11. Chaturvedi AK, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.

    Article  CAS  PubMed  Google Scholar 

  13. Scheffner M, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63(6):1129–36.

    Article  CAS  PubMed  Google Scholar 

  14. Scheffner M, et al. The HPV-16 E6 and E6-AP complex functions as an ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.

    Article  CAS  PubMed  Google Scholar 

  15. Dyson N, et al. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243(4893):934–7.

    Article  CAS  PubMed  Google Scholar 

  16. Harbour JW, et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69.

    Article  CAS  PubMed  Google Scholar 

  17. Rubin SM, et al. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell. 2005;123(6):1093–106.

    Article  CAS  PubMed  Google Scholar 

  18. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol. 2006;24(17):2606–11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goldenberg D, et al. Cystic lymph node metastasis in patients with head and neck cancer: an HPV-associated phenomenon. Head Neck. 2008;30(7):898–903.

    Article  PubMed  Google Scholar 

  20. Wilczynski SP, et al. Detection of human papillomavirus DNA and oncoprotein overexpression are associated with distinct morphological patterns of tonsillar squamous cell carcinoma. Am J Pathol. 1998;152(1):145–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jordan RC, et al. Validation of methods for oropharyngeal cancer HPV status determination in US cooperative group trials. Am J Surg Pathol. 2012;36(7):945–54.

    Article  PubMed  Google Scholar 

  22. Mirghani H, et al. Human papillomavirus testing in oropharyngeal squamous cell carcinoma: what the clinician should know. Oral Oncol. 2014;50(1):1–9.

    Article  PubMed  Google Scholar 

  23. Fakhry C, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rischin D, et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol. 2010;28(27):4142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Posner MR, et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann Oncol. 2011;22(5):1071–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lassen P, et al. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial. Radiother Oncol. 2011;100(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  27. Lohaus F, et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother Oncol. 2014;113(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  28. Fakhry C, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014;32(30):3365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chung CH, et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 2014;32(35):3930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lingen MW, et al. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49(1):1–8.

    Article  PubMed  Google Scholar 

  31. Hubbers CU, Akgul B. HPV and cancer of the oral cavity. Virulence. 2015;6(3):244–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sewell A, et al. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res. 2014;20(9):2300–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vermorken JB, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14(8):697–710.

    Article  CAS  PubMed  Google Scholar 

  34. Fayette J, et al. Randomized phase II study of MEHD7945A (MEHD) vs cetuximab (Cet) in >= 2nd-line recurrent/metastatic squamous cell Carcinoma of the head & neck progressive on/after platinum-based chemotherapy. Ann Oncol. 2014;25 Suppl 4:iv340–56.

    Google Scholar 

  35. Vermorken JB, et al. Impact of tumor HPV status on outcome in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck receiving chemotherapy with or without cetuximab: retrospective analysis of the phase III EXTREME trial. Ann Oncol. 2014;25(4):801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quon H, Richmon JD. Treatment deintensification strategies for HPV-associated head and neck carcinomas. Otolaryngol Clin North Am. 2012;45(4):845–61.

    Article  PubMed  Google Scholar 

  37. McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol. 2015;25 Suppl 1:54–71.

    Article  CAS  PubMed  Google Scholar 

  38. Cancer Genome Atlas Network, et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  CAS  Google Scholar 

  39. Chung CH, et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. 2015;26(6):1216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dassonville O, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol. 1993;11(10):1873–8.

    CAS  PubMed  Google Scholar 

  43. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53(15):3579–84.

    CAS  PubMed  Google Scholar 

  44. Ang KK, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62(24):7350–6.

    CAS  PubMed  Google Scholar 

  45. Licitra L, et al. Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur J Cancer. 2013;49(6):1161–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chung CH, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24(25):4170–6.

    Article  CAS  PubMed  Google Scholar 

  47. Temam S, et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol. 2007;25(16):2164–70.

    Article  CAS  PubMed  Google Scholar 

  48. Burtness B, Bauman JE, Galloway T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol. 2013;14(8):e302–9.

    Article  CAS  PubMed  Google Scholar 

  49. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee JY, Engelman JA, Cantley LC. Biochemistry. PI3K charges ahead. Science. 2007;317(5835):206–7.

    Article  CAS  PubMed  Google Scholar 

  51. Lui VW, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodon J, et al. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10(3):143–53.

    Article  CAS  PubMed  Google Scholar 

  53. Jimeno A, et al. A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Oral Oncol. 2015;51(4):383–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jimeno A, et al. A randomized, phase II trial of cetuximab with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Ann Oncol. 2015;26(3):556–61.

    Article  CAS  PubMed  Google Scholar 

  55. Musgrove EA, et al. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.

    Article  CAS  PubMed  Google Scholar 

  56. Bienvenu F, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463(7279):374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu M, et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem. 2005;280(17):16934–41.

    Article  CAS  PubMed  Google Scholar 

  58. Namazie A, et al. Cyclin D1 amplification and p16 (MTS1/CDK4I) deletion correlate with poor prognosis in head and neck tumors. Laryngoscope. 2002;112(3):472–81.

    Article  CAS  PubMed  Google Scholar 

  59. Kalish LH, et al. Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. Clin Cancer Res. 2004;10(22):7764–74.

    Article  CAS  PubMed  Google Scholar 

  60. Okami K, et al. Cyclin D1 amplification is independent of p16 inactivation in head and neck squamous cell carcinoma. Oncogene. 1999;18(23):3541–5.

    Article  CAS  PubMed  Google Scholar 

  61. Bova RJ, et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin Cancer Res. 1999;5(10):2810–9.

    CAS  PubMed  Google Scholar 

  62. Dok R, et al. p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res. 2014;74(6):1739–51.

    Article  CAS  PubMed  Google Scholar 

  63. Antonsson A, et al. Human papillomavirus status and p16 (INK4A) expression in patients with mucosal squamous cell carcinoma of the head and neck in Queensland, Australia. Cancer Epidemiol. 2015;39(2):174–81.

    Article  PubMed  Google Scholar 

  64. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.

    Article  CAS  PubMed  Google Scholar 

  65. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  66. Marshall ME, et al. Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin Cancer Res. 2011;17(15):5016–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rades D, et al. Fibroblast growth factor 2 is of prognostic value for patients with locally advanced squamous cell carcinoma of the head and neck. Strahlenther Onkol. 2014;190(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  68. Nguyen PT, et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013;109(8):2248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  70. Chin LJ, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68(20):8535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ratner E, et al. A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res. 2010;70(16):6509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paranjape T, et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol. 2011;12(4):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ratner ES, et al. A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene. 2012;31(42):4559–66.

    Article  CAS  PubMed  Google Scholar 

  74. Christensen BC, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung CH, et al. A 3′-UTR KRAS-variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2014;25(11):2230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  77. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kandoth C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haupt Y, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.

    Article  CAS  PubMed  Google Scholar 

  80. Leroy B, et al. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 2013;41(Database Issue):D962–9.

    Article  CAS  PubMed  Google Scholar 

  81. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Petitjean A, et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157–65.

    Article  CAS  PubMed  Google Scholar 

  83. Dittmer D, et al. Gain of function mutations in p53. Nat Genet. 1993;4(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou G, et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell. 2014;54(6):960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nylander K, Dabelsteen E, Hall PA. The p53 molecule and its prognostic role in squamous cell carcinomas of the head and neck. J Oral Pathol Med. 2000;29(9):413–25.

    Article  CAS  PubMed  Google Scholar 

  86. Poeta ML, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lindenbergh-van der Plas M, et al. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17(11):3733–41.

    Article  CAS  PubMed  Google Scholar 

  88. Neskey DM, et al. Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res. 2015;75(7):1527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Osman AA, et al. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 2015;75(7):1205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wright S, Dobzhansky T. Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics. 1946;31:125–56.

    PubMed Central  Google Scholar 

  91. McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med. 2014;371(18):1725–35.

    Article  CAS  PubMed  Google Scholar 

  92. Moser R, et al. Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin Cancer Res. 2014;20(16):4274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Osman AA, et al. Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol Cancer Ther. 2015;14(2):608–19.

    Article  CAS  PubMed  Google Scholar 

  94. Gadhikar MA, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12(9):1860–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Besse B, Olaussen KA, Soria JC. ERCC1 and RRM1: ready for prime time? J Clin Oncol. 2013;31(8):1050–60.

    Article  CAS  PubMed  Google Scholar 

  96. Handra-Luca A, et al. Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by Cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma. Clin Cancer Res. 2007;13(13):3855–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gao Y, Liu D. The roles of excision repair cross-complementation group1 in objective response after cisplatin-based concurrent chemoradiotherapy and survival in head and neck cancers: a systematic review and meta-analysis. Oral Oncol. 2015;51(6):570–7.

    Article  CAS  PubMed  Google Scholar 

  98. Mehra R, et al. Quantification of excision repair cross-complementing group 1 and survival in p16-negative squamous cell head and neck cancers. Clin Cancer Res. 2013;19(23):6633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bauman JE, et al. ERCC1 is a prognostic biomarker in locally advanced head and neck cancer: results from a randomised, phase II trial. Br J Cancer. 2013;109(8):2096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Seiwert TY, et al. DNA repair biomarkers XPF and phospho-MAPKAP kinase 2 correlate with clinical outcome in advanced head and neck cancer. PLoS One. 2014;9(7), e102112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chung CH, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5(5):489–500.

    Article  CAS  PubMed  Google Scholar 

  102. Walter V, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8(2), e56823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Keck MK, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. 2015;21(4):870–81.

    Article  CAS  PubMed  Google Scholar 

  104. De Cecco L, et al. Comprehensive gene expression meta-analysis of head and neck squamous cell carcinoma microarray data defines a robust survival predictor. Ann Oncol. 2014;25(8):1628–35.

    Article  PubMed  Google Scholar 

  105. Kuss I, et al. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10(11):3755–62.

    Article  CAS  PubMed  Google Scholar 

  106. Dasgupta S, et al. Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol. 2005;175(8):5541–50.

    Article  CAS  PubMed  Google Scholar 

  107. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res. 2006;12(13):3890–5.

    Article  CAS  PubMed  Google Scholar 

  108. Lopez-Albaitero A, et al. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol. 2006;176(6):3402–9.

    Article  CAS  PubMed  Google Scholar 

  109. Strome SE, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.

    CAS  PubMed  Google Scholar 

  110. Baruah P, et al. Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients. Immunobiology. 2012;217(7):669–75.

    Article  CAS  PubMed  Google Scholar 

  111. Gildener-Leapman N, Ferris RL, Bauman JE. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(12):1089–96.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Westra WH. The changing face of head and neck cancer in the 21st century: the impact of HPV on the epidemiology and pathology of oral cancer. Head Neck Pathol. 2009;3(1):78–81.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lyford-Pike S, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Herbst RS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smeets SJ, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer. 2007;121(11): p. 2465–72.

    Google Scholar 

  116. Shi W, et al. Comparative prognostic value of HPV16 E6 mRNA compared with in situ hybridization for human oropharyngeal squamous carcinoma. J Clin Oncol. 2009;27(36):6213–21.

    Google Scholar 

  117. Schache AG, et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: sensitivity, specificity, and prognostic discrimination. Clin Cancer Res. 2011;17(19):6262–71.

    Google Scholar 

  118. Schlecht NF, et al, A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer. Mod Pathol. 2011;24(10):1295–305.

    Google Scholar 

  119. Rotnaglova E, et al, HPV involvement in tonsillar cancer: prognostic significance and clinically relevant markers. Int J Cancer. 2011;129(1):101–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlene A. Forastiere MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kang, H., Chung, C.H., Forastiere, A.A. (2016). Biomarkers in Head and Neck Cancer. In: Bernier, J. (eds) Head and Neck Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27601-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27601-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27599-4

  • Online ISBN: 978-3-319-27601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics