Skip to main content

Preclinical Models of Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
Head and Neck Cancer

Abstract

HNSCCs are characterized by a broad genetic diversity, likely from prolonged carcinogen exposure and high levels of genetic instability. To date, this high genetic heterogeneity of HNSCC has hampered the development of targeted therapy, and routine use of molecular markers for treatment selection is not established. This chapter reviews preclinical models of HNSCC as a critical tool for exploring tumor initiation and progression, cancer genetics, novel therapeutic approaches, and predictors of clinical response. HNSCC model systems including cancer cell lines derived from human HNSCC, primary human fresh tumor cultures, animals exposed to oral carcinogens, genetically engineered mouse models (GEMMs), and various combinations of these systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwart W, Griekspoor A, Rondaij M, Verwoerd D, Neefjes J, Michalides R. Classification of anti-estrogens according to intramolecular FRET effects on phospho-mutants of estrogen receptor alpha. Mol Cancer Ther. 2007;6(5):1526–33.

    Article  CAS  PubMed  Google Scholar 

  2. Gerber DE. EGFR inhibition in the treatment of non-small cell lung cancer. Drug Dev Res. 2008;69(6):359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodriguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med. 2014. doi:10.1111/joim.12321. [Epub ahead of print].

  4. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877–88.

    Article  PubMed  CAS  Google Scholar 

  5. Gaykalova DA, Mambo E, Choudhary A, Houghton J, Buddavarapu K, Sanford T, et al. Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One. 2014;9(3):e93102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Reshmi SC, Saunders WS, Kudla DM, Ragin CR, Gollin SM. Chromosomal instability and marker chromosome evolution in oral squamous cell carcinoma. Genes Chromosomes Cancer. 2004;41(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  7. Leng K, Schlien S, Bosch FX. Refined characterization of head and neck squamous cell carcinomas expressing a seemingly wild-type p53 protein. J Oral Pathol Med. 2006;35(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  8. Perez-Ordonez B, Beauchemin M, Jordan RC. Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol. 2006;59(5):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med. 2001;345(26):1890–900.

    Article  CAS  PubMed  Google Scholar 

  10. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  CAS  PubMed  Google Scholar 

  11. Wilsbacher JL, Zhang Q, Tucker LA, Hubbard RD, Sheppard GS, Bamaung NY, et al. Insulin-like growth factor-1 receptor and ErbB kinase inhibitor combinations block proliferation and induce apoptosis through cyclin D1 reduction and Bax activation. J Biol Chem. 2008;283(35):23721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta AK, Lee JH, Wilke WW, Quon H, Smith G, Maity A, et al. Radiation response in two HPV-infected head-and-neck cancer cell lines in comparison to a non-HPV-infected cell line and relationship to signaling through AKT. Int J Radiat Oncol Biol Phys. 2009;74(3):928–33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Young NR, Liu J, Pierce C, Wei TF, Grushko T, Olopade OI, et al. Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Mol Oncol. 2013;7(3):359–68.

    Article  CAS  PubMed  Google Scholar 

  14. Martin D, Abba MC, Molinolo AA, Vitale-Cross L, Wang Z, Zaida M, et al. The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget. 2014;5(19):8906–23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dok R, Kalev P, Van Limbergen EJ, Asbagh LA, Vazquez I, Hauben E, et al. p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res. 2014;74(6):1739–51.

    Article  CAS  PubMed  Google Scholar 

  16. Li R, You S, Hu Z, Chen ZG, Sica GL, Khuri FR, et al. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PLoS One. 2013;8(9):e74670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009;15(22):6758–62.

    Article  CAS  PubMed  Google Scholar 

  18. Park NH, Li SL, Xie JF, Cherrick HM. In vitro and animal studies of the role of viruses in oral carcinogenesis. Eur J Cancer B Oral Oncol. 1992;28B(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  19. Friedman JM, Stavas MJ, Cmelak AJ. Clinical and scientific impact of human papillomavirus on head and neck cancer. World J Clin Oncol. 2014;5(4):781–91.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Sullivan B, Huang SH, Siu LL, Waldron J, Zhao H, Perez-Ordonez B, et al. Deintensification candidate subgroups in human papillomavirus-related oropharyngeal cancer according to minimal risk of distant metastasis. J Clin Oncol. 2013;31(5):543–50.

    Article  PubMed  CAS  Google Scholar 

  22. Lin CJ, Grandis JR, Carey TE, Gollin SM, Whiteside TL, Koch WM, et al. Head and neck squamous cell carcinoma cell lines: established models and rationale for selection. Head Neck. 2007;29(2):163–88.

    Article  PubMed  Google Scholar 

  23. Crowe DL, Sinha UK. p53 apoptotic response to DNA damage dependent on bcl2 but not bax in head and neck squamous cell carcinoma lines. Head Neck. 2006;28(1):15–23.

    Article  PubMed  Google Scholar 

  24. Hoover AC, Spanos WC, Harris GF, Anderson ME, Klingelhutz AJ, Lee JH. The role of human papillomavirus 16 E6 in anchorage-independent and invasive growth of mouse tonsil epithelium. Arch Otolaryngol Head Neck Surgery. 2007;133(5):495–502.

    Article  Google Scholar 

  25. Olthof NC, Huebbers CU, Kolligs J, Henfling M, Ramaekers FC, Cornet I, et al. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines. Int J Cancer. 2014;136(5):E207–18.

    Article  PubMed  CAS  Google Scholar 

  26. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene. 2009;28(43):3801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang S, Li C, Armstrong EA, Peet CR, Saker J, Amler LC, et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res. 2013;73(2):824–33.

    Article  CAS  PubMed  Google Scholar 

  28. Begg AC, van der Kolk PJ, Dewit L, Bartelink H. Radiosensitization by cisplatin of RIF1 tumour cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(5):871–84.

    Article  CAS  PubMed  Google Scholar 

  29. Begg AC, Vens C. Genetic manipulation of radiosensitivity. Int J Radiat Oncol Biol Phys. 2001;49(2):367–71.

    Article  CAS  PubMed  Google Scholar 

  30. Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009;75(2):489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vens C, Begg AC. Targeting base excision repair as a sensitization strategy in radiotherapy. Semin Radiat Oncol. 2010;20(4):241–9.

    Article  PubMed  Google Scholar 

  32. Pekkola K, Raikka A, Joensuu H, Minn H, Aitasalo K, Grenman R. Permanent in vitro growth is associated with poor prognosis in head and neck cancer. Acta Otolaryngol. 2004;124(2):192–6.

    Article  CAS  PubMed  Google Scholar 

  33. Masuda N, Fukuoka M, Takada M, Kudoh S, Kusunoki Y. Establishment and characterization of 20 human non-small cell lung cancer cell lines in a serum-free defined medium (ACL-4). Chest. 1991;100(2):429–38.

    Article  CAS  PubMed  Google Scholar 

  34. Verschraegen CF, Hu W, Du Y, Mendoza J, Early J, Deavers M, et al. Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Mullerian cancers. Clin Cancer Res. 2003;9(2):845–52.

    CAS  PubMed  Google Scholar 

  35. Liu B, Wang T, Qian X, Liu G, Yu L, Ding Y. Anticancer effect of tetrandrine on primary cancer cells isolated from ascites and pleural fluids. Cancer Lett. 2008;268(1):166–75.

    Article  CAS  PubMed  Google Scholar 

  36. Inagaki T, Matsuwari S, Takahashi R, Shimada K, Fujie K, Maeda S. Establishment of human oral-cancer cell lines (KOSC-2 and -3) carrying p53 and c-myc abnormalities by geneticin treatment. Int J Cancer. 1994;56(2):301–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007;12(2):160–70.

    Article  CAS  PubMed  Google Scholar 

  38. Lam DC, Girard L, Suen WS, Chung LP, Tin VP, Lam WK, et al. Establishment and expression profiling of new lung cancer cell lines from Chinese smokers and lifetime never-smokers. J Thorac Oncol. 2006;1(9):932–42.

    Article  PubMed  Google Scholar 

  39. Mouriquand J, Mouriquand C, Petitpas E, Mermet MA. Long-term tissue cultures of human pleural effusions: a cytological follow-up. In Vitro. 1978;14(7):591–600.

    Article  CAS  PubMed  Google Scholar 

  40. Griffon-Etienne G, Merlin JL, Marchal C. Evaluation of taxol in head and neck squamous carcinoma multicellular tumor spheroids. Anticancer Drugs. 1997;8(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  41. Engelholm SA, Vindelov LL, Spang-Thomsen M, Brunner N, Tommerup N, Nielsen MH, et al. Genetic instability of cell lines derived from a single human small cell carcinoma of the lung. Eur J Cancer Clin Oncol. 1985;21(7):815–24.

    Article  CAS  PubMed  Google Scholar 

  42. Ferguson PJ, Cheng YC. Phenotypic instability of drug sensitivity in a human colon carcinoma cell line. Cancer Res. 1989;49(5):1148–53.

    CAS  PubMed  Google Scholar 

  43. Kruczynski A, Kiss R. Evidence of a direct relationship between the increase in the in vitro passage number of human non-small-cell-lung cancer primocultures and their chemosensitivity. Anticancer Res. 1993;13(2):507–13.

    CAS  PubMed  Google Scholar 

  44. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grenman R, Carey TE, McClatchey KD, Wagner JG, Pekkola-Heino K, Schwartz DR, et al. In vitro radiation resistance among cell lines established from patients with squamous cell carcinoma of the head and neck. Cancer. 1991;67(11):2741–7.

    Article  CAS  PubMed  Google Scholar 

  46. Spiegel J, Carey TE, Shimoura S, Krause CJ. In vitro sensitivity and resistance of cultured human squamous carcinoma cells to cis-platinum and methotrexate. Otolaryngol Head Neck Surg. 1984;92(5):524–31.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res. 2002;8(5):935–42.

    CAS  PubMed  Google Scholar 

  48. O'Brien SG, Kirkland MA, Melo JV, Rao MH, Davidson RJ, McDonald C, et al. Antisense BCR-ABL oligomers cause non-specific inhibition of chronic myeloid leukemia cell lines. Leukemia. 1994;8(12):2156–62.

    PubMed  Google Scholar 

  49. Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5(5):489–500.

    Article  CAS  PubMed  Google Scholar 

  50. de Jong MC, Pramana J, Knegjens JL, Balm AJ, van den Brekel MW, Hauptmann M, et al. HPV and high-risk gene expression profiles predict response to chemoradiotherapy in head and neck cancer, independent of clinical factors. Radiother Oncol. 2010;95(3):365–70.

    Article  PubMed  Google Scholar 

  51. Slebos RJ, Yi Y, Ely K, Carter J, Evjen A, Zhang X, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):701–9.

    Article  CAS  PubMed  Google Scholar 

  52. Courtenay VD, Mills J. An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer. 1978;37(2):261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bjork-Eriksson T, West C, Karlsson E, Mercke C. Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancers. Int J Radiat Oncol Biol Phys. 2000;46(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  54. Johns ME. The clonal assay of head and neck tumor cells: results and clinical correlations. Laryngoscope. 1982;92(7 Pt 2 Suppl 28):1–26.

    Article  CAS  PubMed  Google Scholar 

  55. Mattox DE, Von Hoff DD, Clark GM, Aufdemorte TB. Factors that influence growth of head and neck squamous carcinoma in the soft agar cloning assay. Cancer. 1984;53(8):1736–40.

    Article  CAS  PubMed  Google Scholar 

  56. Stausbol-Gron B, Overgaard J. Relationship between tumour cell in vitro radiosensitivity and clinical outcome after curative radiotherapy for squamous cell carcinoma of the head and neck. Radiother Oncol. 1999;50(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  57. Brock WA, Baker FL, Wike JL, Sivon SL, Peters LJ. Cellular radiosensitivity of primary head and neck squamous cell carcinomas and local tumor control. Int J Radiat Oncol Biol Phys. 1990;18(6):1283–6.

    Article  CAS  PubMed  Google Scholar 

  58. Eschwege F, Bourhis J, Girinski T, Lartigau E, Guichard M, Deble D, et al. Predictive assays of radiation response in patients with head and neck squamous cell carcinoma: a review of the Institute Gustave Roussy experience. Int J Radiat Oncol Biol Phys. 1997;39(4):849–53.

    Article  CAS  PubMed  Google Scholar 

  59. Girinsky T, Bernheim A, Lubin R, Tavakoli-Razavi T, Baker F, Janot F, et al. In vitro parameters and treatment outcome in head and neck cancers treated with surgery and/or radiation: cell characterization and correlations with local control and overall survival. Int J Radiat Oncol Biol Phys. 1994;30(4):789–94.

    Article  CAS  PubMed  Google Scholar 

  60. Dollner R, Granzow C, Tschop K, Dietz A. Ex vivo responsiveness of head and neck squamous cell carcinoma to vinorelbine. Anticancer Res. 2006;26(3B):2361–5.

    CAS  PubMed  Google Scholar 

  61. Horn IS, Wichmann G, Mozet C, Dietz A, Dollner R, Tschop K, et al. Heterogeneity of epithelial and stromal cells of head and neck squamous cell carcinomas in ex vivo chemoresponse. Cancer Chemother Pharmacol. 2010;65(6):1153–63.

    Article  PubMed  Google Scholar 

  62. Stausbol-Gron B, Nielsen OS, Moller Bentzen S, Overgaard J. Selective assessment of in vitro radiosensitivity of tumour cells and fibroblasts from single tumour biopsies using immunocytochemical identification of colonies in the soft agar clonogenic assay. Radiother Oncol. 1995;37(2):87–99.

    Article  CAS  PubMed  Google Scholar 

  63. Dollner R, Granzow C, Helmke BM, Ruess A, Schad A, Dietz A. The impact of stromal cell contamination on chemosensitivity testing of head and neck carcinoma. Anticancer Res. 2004;24(1):325–31.

    PubMed  Google Scholar 

  64. Robbins KT, Connors KM, Storniolo AM, Hanchett C, Hoffman RM. Sponge-gel-supported histoculture drug-response assay for head and neck cancer. Correlations with clinical response to cisplatin. Arch Otolaryngol Head Neck Surg. 1994;120(3):288–92.

    Article  CAS  PubMed  Google Scholar 

  65. Ariyoshi Y, Shimahara M, Tanigawa N. Study on chemosensitivity of oral squamous cell carcinomas by histoculture drug response assay. Oral Oncol. 2003;39(7):701–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hasegawa Y, Goto M, Hanai N, Ijichi K, Adachi M, Terada A, et al. Evaluation of optimal drug concentration in histoculture drug response assay in association with clinical efficacy for head and neck cancer. Oral Oncol. 2007;43(8):749–56.

    Article  CAS  PubMed  Google Scholar 

  67. Pathak KA, Juvekar AS, Radhakrishnan DK, Deshpande MS, Pai VR, Chaturvedi P, et al. In vitro chemosensitivity profile of oral squamous cell cancer and its correlation with clinical response to chemotherapy. Indian J Cancer. 2007;44(4):142–6.

    Article  CAS  PubMed  Google Scholar 

  68. Singh B, Li R, Xu L, Poluri A, Patel S, Shaha AR, et al. Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck. 2002;24(5):437–42.

    Article  PubMed  Google Scholar 

  69. Heimdal J, Aarstad HJ, Olofsson J. Monocytes secrete interleukin-6 when co-cultured in vitro with benign or malignant autologous fragment spheroids from squamous cell carcinoma patients. Scand J Immunol. 2000;51(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  70. Kross KW, Heimdal JH, Olsnes C, Olofsson J, Aarstad HJ. Co-culture of head and neck squamous cell carcinoma spheroids with autologous monocytes predicts prognosis. Scand J Immunol. 2008;67(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  71. Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47(2):83–91.

    Article  PubMed  Google Scholar 

  72. Lim YC, Oh SY, Kim H. Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Exp Cell Res. 2012;318(10):1104–11.

    Article  CAS  PubMed  Google Scholar 

  73. Kopf-Maier P, Kolon B. An organoid culture assay (OCA) for determining the drug sensitivity of human tumors. Int J Cancer. 1992;51(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  74. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2012;48(12):1220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galer CE, Sano D, Ghosh SC, Hah JH, Auzenne E, Hamir AN, et al. Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism. Oral Oncol. 2011;47(11):1039–47.

    Article  CAS  PubMed  Google Scholar 

  76. Martin CK, Werbeck JL, Thudi NK, Lanigan LG, Wolfe TD, Toribio RE, et al. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma. Cancer Res. 2010;70(21):8607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang WC, Chan SH, Jang TH, Chang JW, Ko YC, Yen TC, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res. 2014;74(3):751–64.

    Article  CAS  PubMed  Google Scholar 

  78. Sano D, Xie TX, Ow TJ, Zhao M, Pickering CR, Zhou G, et al. Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin Cancer Res. 2011;17(21):6658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Szaniszlo P, Fennewald SM, Qiu S, Kantara C, Shilagard T, Vargas G, et al. Temporal characterization of lymphatic metastasis in an orthotopic mouse model of oral cancer. Head Neck. 2014;36(11):1638–47.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hwang YS, Zhang X, Park KK, Chung WY. An orthotopic and osteolytic model with a newly established oral squamous cell carcinoma cell line. Arch Oral Biol. 2013;58(2):218–25.

    Article  CAS  PubMed  Google Scholar 

  81. Li X, Xu Q, Wu Y, Li J, Tang D, Han L, et al. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis. 2014;35(6):1362–70.

    Article  CAS  PubMed  Google Scholar 

  82. Smirnova T, Adomako A, Locker J, Van Rooijen N, Prystowsky MB, Segall JE. In vivo invasion of head and neck squamous cell carcinoma cells does not require macrophages. Am J Pathol. 2011;178(6):2857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004;40(6):827–36.

    Article  CAS  PubMed  Google Scholar 

  84. O'Malley Jr BW, Cope KA, Johnson CS, Schwartz MR. A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg. 1997;123(1):20–4.

    Article  PubMed  Google Scholar 

  85. Yuspa SH, Hawley-Nelson P, Koehler B, Stanley JR. A survey of transformation markers in differentiating epidermal cell lines in culture. Cancer Res. 1980;40(12):4694–703.

    CAS  PubMed  Google Scholar 

  86. Chen Z, Smith CW, Kiel D, Van Waes C. Metastatic variants derived following in vivo tumor progression of an in vitro transformed squamous cell carcinoma line acquire a differential growth advantage requiring tumor-host interaction. Clin Exp Metastasis. 1997;15(5):527–37.

    Article  CAS  PubMed  Google Scholar 

  87. Thomas GR, Chen Z, Oechsli MN, Hendler FJ, Van Waes C. Decreased expression of CD80 is a marker for increased tumorigenicity in a new murine model of oral squamous-cell carcinoma. Int J Cancer. 1999;82(3):377–84.

    Article  CAS  PubMed  Google Scholar 

  88. Behren A, Kamenisch Y, Muehlen S, Flechtenmacher C, Haberkorn U, Hilber H, et al. Development of an oral cancer recurrence mouse model after surgical resection. Int J Oncol. 2010;36(4):849–55.

    PubMed  Google Scholar 

  89. Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET, et al. Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-kappaB signal pathway. Cancer Res. 2001;61(12):4797–808.

    CAS  PubMed  Google Scholar 

  90. Lee JK, Lim SC, Kim HD, Yoon TM, Kim K, Nam JH, et al. KITENIN represents a more aggressive phenotype in a murine model of oral cavity squamous carcinoma. Otolaryngol Head Neck Surg. 2010;142(5):747–52.e1–2.

    Article  PubMed  Google Scholar 

  91. Takayama Y, Mori T, Nomura T, Shibahara T, Sakamoto M. Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma. Int J Oncol. 2010;36(6):1387–94.

    CAS  PubMed  Google Scholar 

  92. Vigneswaran N, Wu J, Song A, Annapragada A, Zacharias W. Hypoxia-induced autophagic response is associated with aggressive phenotype and elevated incidence of metastasis in orthotopic immunocompetent murine models of head and neck squamous cell carcinomas (HNSCC). Exp Mol Pathol. 2011;90(2):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anderson RT, Keysar SB, Bowles DW, Glogowska MJ, Astling DP, Morton JJ, et al. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas. Mol Cancer Ther. 2013;12(10):1994–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Law JH, Whigham AS, Wirth PS, Liu D, Pham MQ, Vadivelu S, et al. Human-in-mouse modeling of primary head and neck squamous cell carcinoma. Laryngoscope. 2009;119(12):2315–23.

    Article  PubMed  Google Scholar 

  95. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006;12(15):4652–61.

    Article  CAS  PubMed  Google Scholar 

  96. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Langdon SP, Hendriks HR, Braakhuis BJ, Pratesi G, Berger DP, Fodstad O, et al. Preclinical phase II studies in human tumor xenografts: a European multicenter follow-up study. Ann Oncol. 1994;5(5):415–22.

    CAS  PubMed  Google Scholar 

  98. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200(4):429–47.

    Article  PubMed  CAS  Google Scholar 

  99. Gimenez-Conti IB, Bianchi AB, Stockman SL, Conti CJ, Slaga TJ. Activating mutation of the Ha-ras gene in chemically induced tumors of the hamster cheek pouch. Mol Carcinog. 1992;5(4):259–63.

    Article  CAS  PubMed  Google Scholar 

  100. Yuan B, Heniford BW, Ackermann DM, Hawkins BL, Hendler FJ. Harvey ras (H-ras) point mutations are induced by 4-nitroquinoline-1-oxide in murine oral squamous epithelia, while squamous cell carcinomas and loss of heterozygosity occur without additional exposure. Cancer Res. 1994;54(20):5310–7.

    CAS  PubMed  Google Scholar 

  101. Shklar G, Schwartz J, Grau D, Trickler DP, Wallace KD. Inhibition of hamster buccal pouch carcinogenesis by 13-cis-retinoic acid. Oral Surg Oral Med Oral Pathol. 1980;50(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  102. Take Y, Umeda M, Teranobu O, Shimada K. Lymph node metastases in hamster tongue cancer induced with 9,10-dimethyl-1,2-benzanthracene: association between histological findings and the incidence of neck metastases, and the clinical implications for patients with tongue cancer. Br J Oral Maxillofac Surg. 1999;37(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  103. Letchoumy PV, Mohan KV, Stegeman JJ, Gelboin HV, Hara Y, Nagini S. In vitro antioxidative potential of lactoferrin and black tea polyphenols and protective effects in vivo on carcinogen activation, DNA damage, proliferation, invasion, and angiogenesis during experimental oral carcinogenesis. Oncol Res. 2008;17(5):193–203.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR. Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Singapore Med J. 2009;50(2):139–46.

    CAS  PubMed  Google Scholar 

  105. Feng L, Wang Z. Chemopreventive effect of celecoxib in oral precancers and cancers. Laryngoscope. 2006;116(10):1842–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun Z, Sood S, Li N, Yang P, Newman RA, Yang CS, et al. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch by topical application of a dual inhibitor of epidermal growth factor receptor (EGFR) and ErbB2 tyrosine kinases. Oral Oncol. 2008;44(7):652–7.

    Article  CAS  PubMed  Google Scholar 

  107. Schoop RA, Noteborn MH, Baatenburg de Jong RJ. A mouse model for oral squamous cell carcinoma. J Mol Histol. 2009;40(3):177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res. 2004;10(1 Pt 1):301–13.

    Article  CAS  PubMed  Google Scholar 

  109. Li J, Liang F, Yu D, Qing H, Yang Y. Development of a 4-nitroquinoline-1-oxide model of lymph node metastasis in oral squamous cell carcinoma. Oral Oncol. 2013;49(4):299–305.

    Article  PubMed  CAS  Google Scholar 

  110. Czerninski R, Amornphimoltham P, Patel V, Molinolo AA, Gutkind JS. Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model. Cancer Prev Res. 2009;2(1):27–36.

    Article  CAS  Google Scholar 

  111. Leeman-Neill RJ, Seethala RR, Singh SV, Freilino ML, Bednash JS, Thomas SM, et al. Inhibition of EGFR-STAT3 signaling with erlotinib prevents carcinogenesis in a chemically-induced mouse model of oral squamous cell carcinoma. Cancer Prev Res. 2011;4(2):230–7.

    Article  CAS  Google Scholar 

  112. Zhou G, Hasina R, Wroblewski K, Mankame TP, Doci CL, Lingen MW. Dual inhibition of vascular endothelial growth factor receptor and epidermal growth factor receptor is an effective chemopreventive strategy in the mouse 4-NQO model of oral carcinogenesis. Cancer Prev Res. 2010;3(11):1493–502.

    Article  CAS  Google Scholar 

  113. Saranath D, Chang SE, Bhoite LT, Panchal RG, Kerr IB, Mehta AR, et al. High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer. 1991;63(4):573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ide F, Kitada M, Sakashita H, Kusama K. Reduction of p53 dosage renders mice hypersensitive to 7, 12-dimethylbenz(alpha) anthracene-induced salivary gland tumorigenesis. Anticancer Res. 2003;23(1A):201–4.

    CAS  PubMed  Google Scholar 

  115. Ide F, Kitada M, Sakashita H, Kusama K, Tanaka K, Ishikawa T. p53 haploinsufficiency profoundly accelerates the onset of tongue tumors in mice lacking the xeroderma pigmentosum group A gene. Am J Pathol. 2003;163(5):1729–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang Z, Wang Y, Yao R, Li J, Lubet RA, You M. p53 Transgenic mice are highly susceptible to 4-nitroquinoline-1-oxide-induced oral cancer. Mol Cancer Res. 2006;4(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  117. Berns A. Cancer. Improved mouse models. Nature. 2001;410(6832):1043–4.

    Article  CAS  PubMed  Google Scholar 

  118. Opitz OG, Harada H, Suliman Y, Rhoades B, Sharpless NE, Kent R, et al. A mouse model of human oral-esophageal cancer. J Clin Invest. 2002;110(6):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS. Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res. 2004;64(24):8804–7.

    Article  CAS  PubMed  Google Scholar 

  120. Akagi K, Sandig V, Vooijs M, Van der Valk M, Giovannini M, Strauss M, et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 1997;25(9):1766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15(24):3243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Caulin C, Nguyen T, Longley MA, Zhou Z, Wang XJ, Roop DR. Inducible activation of oncogenic K-ras results in tumor formation in the oral cavity. Cancer Res. 2004;64(15):5054–8.

    Article  CAS  PubMed  Google Scholar 

  123. Vasioukhin V, Degenstein L, Wise B, Fuchs E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci USA. 1999;96(15):8551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Higashi AY, Ikawa T, Muramatsu M, Economides AN, Niwa A, Okuda T, et al. Direct hematological toxicity and illegitimate chromosomal recombination caused by the systemic activation of CreERT2. J Immunol. 2009;182(9):5633–40.

    Article  CAS  PubMed  Google Scholar 

  125. Leonhard WN, Roelfsema JH, Lantinga-van Leeuwen IS, Breuning MH, Peters DJ. Quantification of Cre-mediated recombination by a novel strategy reveals a stable extra-chromosomal deletion-circle in mice. BMC Biotechnol. 2008;8:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Acin S, Li Z, Mejia O, Roop DR, El-Naggar AK, Caulin C. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras. J Pathol. 2011;225(4):479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006;20(10):1331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119(11):3408–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB. Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res. 2012;18(19):5304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hall B, Nakashima H, Sun ZJ, Sato Y, Bian Y, Husain SR, et al. Targeting of interleukin-13 receptor alpha2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF-beta and PTEN signaling. J Transl Med. 2013;11:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Herzog A, Bian Y, Vander Broek R, Hall B, Coupar J, Cheng H, et al. PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res. 2013;19(14):3808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Raimondi AR, Molinolo A, Gutkind JS. Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res. 2009;69(10):4159–66.

    Article  CAS  PubMed  Google Scholar 

  133. Moral M, Segrelles C, Lara MF, Martinez-Cruz AB, Lorz C, Santos M, et al. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res. 2009;69(3):1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Andl T, Le Bras GF, Richards NF, Allison GL, Loomans HA, Washington MK, et al. Concerted loss of TGFbeta-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma. Carcinogenesis. 2014;35(11):2602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, et al. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res. 2009;69(14):5918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ku TK, Crowe DL. Impaired T lymphocyte function increases tumorigenicity and decreases tumor latency in a mouse model of head and neck cancer. Int J Oncol. 2009;35(5):1211–21.

    CAS  PubMed  Google Scholar 

  137. Sarkar J, Dominguez E, Li G, Kusewitt DF, Johnson DG. Modeling gene-environment interactions in oral cavity and esophageal cancers demonstrates a role for the p53 R72P polymorphism in modulating susceptibility. Mol Carcinog. 2014;53(8):648–58.

    CAS  PubMed  Google Scholar 

  138. Strati K, Pitot HC, Lambert PF. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci USA. 2006;103(38):14152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wilkey JF, Buchberger G, Saucier K, Patel SM, Eisenberg E, Nakagawa H, et al. Cyclin D1 overexpression increases susceptibility to 4-nitroquinoline-1-oxide-induced dysplasia and neoplasia in murine squamous oral epithelium. Mol Carcinog. 2009;48(9):853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Paolini F, Massa S, Manni I, Franconi R, Venuti A. Immunotherapy in new pre-clinical models of HPV-associated oral cancers. Hum Vaccin Immunother. 2013;9(3):534–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sanjiv K, Su TL, Suman S, Kakadiya R, Lai TC, Wang HY, et al. The novel DNA alkylating agent BO-1090 suppresses the growth of human oral cavity cancer in xenografted and orthotopic mouse models. Int J Cancer. 2012;130(6):1440–50.

    Article  CAS  PubMed  Google Scholar 

  142. Martin CK, Dirksen WP, Shu ST, Werbeck JL, Thudi NK, Yamaguchi M, et al. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol. 2012;48(6):491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhong R, Pytynia M, Pelizzari C, Spiotto M. Bioluminescent imaging of HPV-positive oral tumor growth and its response to image-guided radiotherapy. Cancer Res. 2014;74(7):2073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gatesman Ammer A, Hayes KE, Martin KH, Zhang L, Spirou GA, Weed SA. Multi-photon imaging of tumor cell invasion in an orthotopic mouse model of oral squamous cell carcinoma. J Vis Exp. 2011;53:e2941.

    Google Scholar 

  145. Walk EL, McLaughlin S, Coad J, Weed SA. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice. PLoS One. 2014;9(6):e100185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Farahati B, Stachs O, Prall F, Stave J, Guthoff R, Pau HW, et al. Rigid confocal endoscopy for in vivo imaging of experimental oral squamous intra-epithelial lesions. J Oral Pathol Med. 2010;39(4):318–27.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Zuur MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zuur, C.L., Dohmen, A.J.C., van den Brekel, M.W., Wang, XJ., Malkosky, S. (2016). Preclinical Models of Head and Neck Squamous Cell Carcinoma. In: Bernier, J. (eds) Head and Neck Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27601-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27601-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27599-4

  • Online ISBN: 978-3-319-27601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics