Skip to main content

G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

G protein-coupled receptors (GPCRs) enable cells to detect and respond to changes in their extracellular environment. With over 800 members, the GPCR family includes receptors for a diverse range of agonists including olfactants, neurotransmitters and hormones. Importantly, GPCRs represent a major therapeutic target, with approximately 50 % of all current drugs acting at some aspect of GPCR signalling (Audet and Bouvier 2008). GPCRs are widely expressed by all cell types in the gastrointestinal (GI) tract and are major regulators of every aspect of gut function. Many GPCRs are internalised upon activation, and this represents one of the mechanisms through which G protein-signalling is terminated. The latency between the endocytosis of GPCRs and their recycling and resensitization is a major determinant of the cell’s ability to respond to subsequent exposure to agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU (2013) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144:145–154

    Article  CAS  PubMed  Google Scholar 

  • Audet M, Bouvier M (2008) Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol 4:397–403

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  CAS  PubMed  Google Scholar 

  • Bunnett NW, Dazin PF, Payan DG, Grady EF (1995) Characterization of receptors using cyanine 3-labeled neuropeptides. Peptides 16:733–740

    Article  CAS  PubMed  Google Scholar 

  • Cattaruzza F, Poole DP, Bunnett NW (2013) Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem Soc Trans 41:137–143

    Article  CAS  PubMed  Google Scholar 

  • Cottrell GS, Padilla BE, Amadesi S, Poole DP, Murphy JE, Hardt M, Roosterman D, Steinhoff M, Bunnett NW (2009) Endosomal endothelin-converting enzyme-1: a regulator of beta-arrestin-dependent ERK signaling. J Biol Chem 284:22411–22425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    Article  CAS  PubMed  Google Scholar 

  • Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW (1996) Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 75:1239–1254

    Article  CAS  PubMed  Google Scholar 

  • Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang M, Maguma HT, Smith TH, Ross GR, Dewey WL, Akbarali HI (2012) The role of beta-arrestin2 in the mechanism of morphine tolerance in the mouse and guinea pig gastrointestinal tract. J Pharmacol Exp Ther 340:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguma HT, Dewey WL, Akbarali HI (2012) Differences in the characteristics of tolerance to mu-opioid receptor agonists in the colon from wild type and beta-arrestin2 knockout mice. Eur J Pharmacol 685:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantyh CR, Pappas TN, Lapp JA, Washington MK, Neville LM, Ghilardi JR, Rogers SD, Mantyh PW, Vigna SR (1996) Substance P activation of enteric neurons in response to intraluminal Clostridium difficile toxin A in the rat ileum. Gastroenterology 111:1272–1280

    Article  CAS  PubMed  Google Scholar 

  • McConalogue K, Corvera CU, Gamp PD, Grady EF, Bunnett NW (1998) Desensitization of the neurokinin-1 receptor (NK1-R) in neurons: effects of substance P on the distribution of NK1-R, Galphaq/11, G-protein receptor kinase-2/3, and beta-arrestin-1/2. Mol Biol Cell 9:2305–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 106:17615–17622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TV, Poole DP, Harvey JR, Stebbing MJ, Furness JB (2005) Investigation of PKC isoform-specific translocation and targeting of the current of the late afterhyperpolarizing potential of myenteric AH neurons. Eur J Neurosci 21:905–913

    Article  PubMed  Google Scholar 

  • Patierno S, Anselmi L, Jaramillo I, Scott D, Garcia R, Sternini C (2011) Morphine induces mu opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 140:618–626

    Article  CAS  PubMed  Google Scholar 

  • Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW (2011) Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol 589:5213–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DP, Matsuyama H, Nguyen TV, Eriksson EM, Fowler CJ, Furness JB (2007) Inflammation and inflammatory agents activate protein kinase C epsilon translocation and excite guinea-pig submucosal neurons. Gastroenterology 133:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Poole DP, Amadesi S, Rozengurt E, Thacker M, Bunnett NW, Furness JB (2008) Stimulation of the neurokinin 3 receptor activates protein kinase C epsilon and protein kinase D in enteric neurons. Am J Physiol Gastrointest Liver Physiol 294:G1245–G1256

    Article  CAS  PubMed  Google Scholar 

  • Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU (2010) Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 22:814–825, e227–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW (2015) Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 309(4):G248–G259. doi:10.1152/ajpgi.00118.2015

    Article  CAS  PubMed  Google Scholar 

  • Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Southwell BR, Woodman HL, Royal SJ, Furness JB (1998) Movement of villi induces endocytosis of NK1 receptors in myenteric neurons from guinea-pig ileum. Cell Tissue Res 292:37–45

    Article  CAS  PubMed  Google Scholar 

  • Sternini C, Spann M, Anton B, Keith DE Jr, Bunnett NW, von Zastrow M, Evans C, Brecha NC (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci U S A 93:9241–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson G, Kelly E, Christopoulos A, Canals M (2015) Novel GPCR paradigms at the mu-opioid receptor. Br J Pharmacol 172(2):287–296

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Galligan JJ (2004) Function of opioids in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 2):17–28

    Article  PubMed  Google Scholar 

  • Zhao P, Canals M, Murphy JE, Klingler D, Eriksson EM, Pelayo JC, Hardt M, Bunnett NW, Poole DP (2013) Agonist-biased trafficking of somatostatin receptor 2A in enteric neurons. J Biol Chem 288:25689–25700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by: NHMRC 454858 & 1049730 (DPP), NHMRC 63303, 1049682, 1031886 and Monash University (NWB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poole, D.P., Bunnett, N.W. (2016). G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_14

Download citation

Publish with us

Policies and ethics