Skip to main content

Dynamic Impact of Population Aging on Regional Economies in Korea Using a Recursive-Dynamic Interregional CGE-Population Model

  • Chapter
  • First Online:
Regional Growth and Sustainable Development in Asia

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 7))

  • 613 Accesses

Abstract

This chapter estimates dynamic effects of population aging on regional economies using a recursive-dynamic interregional CGE-Population model of Korea. The model accounts for the economic behavior of producers and consumers on the real side economies of two regions: the Seoul Metropolitan Area and the rest of Korea. Population demographics in each region are disaggregated into eight age cohorts that have different labor productivities and participation rates on the supply side and consumption behaviors on the demand side. The aging trend could have negative effects on the economy, reducing the GDP by 2.37 % on a 15-year average. The economic recovery from this decline could require an annual increase in educational investments on age cohort 20–29 by at least 12 % for 15 years. It implies a net increase rate of 4.60 % because the educational investments have increased annually by 7.40 % since 2007.

The earlier version of this chapter has been presented at the third Asian Seminar in Regional Science, Hualien, Taiwan August 7–8, 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Yoon and Hewings (2006) explored the effects of the aging population on consumptions in the Chicago region using an extended Chicago Region Econometric Input-Output Model.

  2. 2.

    The wage is used as a proxy variable for the consumption.

  3. 3.

    Belgodere and Vellutini (2011) set 10 % of the average value as the upper and lower limits of the parameter.

  4. 4.

    Regarding this issue, at least two cases are applied in terms of the wage determination and clearing process of the regional labor unemployment. One is that the wage is determined by the labor productivity with disequilibrium in the labor market. In this case, the higher labor productivity is expected to increase the wage level, which causes a reduction of labor demand. The economic outcome is derived from the interaction between two variables, the wage and the labor demand, so it might be ambiguous. Another case is that overall improvement of the labor productivity leads to an increase in labor demand, which has a positive effect on the economic growth in the long run. However, the result relies on the elasticity values of the education by age cohort with respect to the labor productivity.

References

  • Belgodere, A., and C. Vellutini. 2011. Identifying key elasticities in a CGE model: A Monte Carlo approach. Applied Economics Letters 18 (17): 1619–1622.

    Article  Google Scholar 

  • Brunow, S., and G. Hirte. 2009. The age pattern of human capital and regional productivity: A Spatial econometric study on German regions. Papers in Regional Science 88 (4): 799–823.

    Article  Google Scholar 

  • Fougère, M., S. Harvey, M. Mèrette, and F. Poitras. 2004. Aging population and immigration in Canada: An analysis with a regional CGE overlapping generation model. Canadian Journal of Regional Science 27 (2): 209–236.

    Google Scholar 

  • Kim, T., and G.J.D. Hewings. 2013a. Endogenous growth in an aging economy: Evidence and policy measures. Annals of Regional Science 50 (3): 705–730.

    Article  Google Scholar 

  • ———. 2013b. Aging population in a regional economy: Addressing household heterogeneity with a focus on migration status and investment in human capital. International Regional Science Review, doi:10.1177/0160017613484930.

  • Kim, E., G.J.D. Hewings, and C. Lee. 2016. Impact of educational investments on economic losses from population ageing using an interregional CGE-population model. Economic Modelling 54 : 126–138.

    Article  Google Scholar 

  • Lisenkova, K., M. Mérette, and R. Wright. 2013. Population ageing and the labour market: Modelling size and age-specific effects. Economic Modelling 35 : 981–989.

    Article  Google Scholar 

  • Mankiw, N.G., and D.N. Weil. 1989. The baby boom, the baby bust, and the housing market. Regional Science and Urban Economics 19 (2): 235–258.

    Article  Google Scholar 

  • Park, S. 2006. Retirement Exodus and Its Impacts on Regional Economies: Simulation Results from the Chicago CGE Model. Discussion Paper 06-T-5, Regional Economics Applications Laboratory, University of Illinois, Urbana, IL.

    Google Scholar 

  • Park, S., and G.J.D. Hewings. 2007a. Aging and the Regional Economy: Simulation Results from the Chicago CGE Model. Discussion Paper 07-T-4, Regional Economics Applications Laboratory, University of Illinois, Urbana, IL.

    Google Scholar 

  • ———. 2007b. Immigration, Aging and the Regional Economy. Discussion Paper 07-T-5, Regional Economics Applications Laboratory, University of Illinois, Urbana, IL.

    Google Scholar 

  • ———. 2007c. Does a Change in Retirement Age Affect a Regional Economy? Evidence from the Chicago Economy. Discussion Paper 07-T-6, Regional Economics Applications Laboratory, University of Illinois, Urbana, IL.

    Google Scholar 

  • Robinson, S. 1989. Multisectoral models. In Handbook of Development Economics, ed. H. Chenery and T.N. Srinivasan, 885–947. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Shim, J., and E. Kim. 2012. Analysis of occupational mobility of college graduates. The Korea Spatial Planning Review 75 : 37–51 (in Korean).

    Article  Google Scholar 

  • Yoon, S., and G.J.D. Hewings. 2006. Impacts of Demographic Changes in the Chicago Region. Discussion Paper 06-T-7, Regional Economics Applications Laboratory, University of Illinois, Urbana, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euijune Kim .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Major Equations of ICGEP Model

1.1 Equations

  1. (1)

    Production and Faction inputs

Output

\( {X}_i^r(t)={VA}_i^r(t)+\sum_r\sum_j{\mathrm{io}}_{ji}^{rs}{X}_j^r(t) \)

Value added

\( \ln \left({VA}_i^r(t)\right)={\beta}_{0i}^{\kern0.5em r}+{\beta}_{1i}^{\kern0.5em r} \ln \left({K}_i^r(t)\right)+\left(1-{\beta}_{1i}^{\kern0.5em r}\right)\sum_{h=2}^7{\beta}_{2hi}^{\kern1.25em r} \ln \left({H}_{hi}^{\kern0.5em r}(t)\right) \)

 

s.t. \( \sum_{h=2}^7{\beta}_{2hi}^{\kern1.25em r}=1 \)

Human capital

\( {H}_{hi}^{\kern0.75em r}(t)={\mathrm{hO}}_{hi}^{\kern0.75em r}{L}_{hi}^{\kern0.75em r}(t)\ {HQ}_h^r(t) \)

Labor demand

\( {WA}^r(t)\ {\mathrm{wdist}}_{hi}^{\kern0.5em r}\ {H}_{hi}^{\kern0.5em r}(t)={VA}_i^r(t)\ {PVA}_i^r(t)\ {\left(1-{\beta}_1\right)}_i^r\ {\beta}_{2hi}^{\kern1.25em r} \)

Average wage rate

\( {WA}^r(t)=\sum_{h=2}^7\sum_{i=1}^3{W}_h^r(t){H}_{hi}^{\kern0.5em r}(t)/\sum_{h=2}^7\sum_{i=1}^3{H}_{hi}^{\kern0.5em r}(t) \)

Capital demand

\( {R}^r(t)\ {\mathrm{kdist}}_i^r\ {K}_i^r(t)={VA}_i^r(t)\ {PVA}_i^r(t)\ {\beta}_{1i}^{\kern0.5em r} \)

Quality of labor input

\( \ln \left({W}_h^r(t)\right)={\eta}_{0h}^{\kern0.75em r}+{\eta}_{1h}^{\kern0.75em r} \ln \left({\mathrm{EXPE}}_h^r(t)\right)+{\eta}_{2h}^{\kern0.75em r} \ln \left({\mathrm{TEDU}}_h^r(t)\right)+{\eta}_{3h}^{\kern0.75em r}{\mathrm{GEN}D}^r(t)+{\eta}_{4h}^{\kern0.75em r}{\mathrm{MANU}}^r(t) \)

  1. (2)

    Trade

Output

\( {X}_i^r(t)={AT}_i^r{\left[\ {\gamma}_i^r\ {\mathrm{EX}}_i^{r{\rho}_i^r}(t)+\left(1-{\gamma}_i^r\right)\ {XD}_i^{r{\rho}_i^r}(t)\right]}^{\frac{1}{\rho_i^r}} \)

Production price

\( {PX}_i^r(t){X}_i^r(t)={PE}_i^r(t){\mathrm{EX}}_i^r(t)+{PD}_i^r(t){XD}_i^r(t) \)

Export

\( \frac{{\mathrm{EX}}_i^r(t)}{XD_i^r(t)}={\left[\frac{PE_i^r(t)}{PD_i^r(t)}\ \frac{\left(1-{\gamma}_i^r\right)}{\gamma_i^r}\right]}^{\frac{1}{\rho_i^r-1}} \)

Total demand

\( {Q}_i^r(t)={A}_i^r{\left[{\delta}_i^r\ {IM}_i^{r-{a}_i^r}(t)+\left(1-{\delta}_i^r\right)\ {XD}_i^{ra_i^r}(t)\right]}^{-\frac{1}{a_i^r}} \)

Composite goods price

\( {PC}_i^r(t){Q}_i^r(t)={\mathrm{PM}}_i^r(t){IM}_i^r(t)+{PD}_i^r(t){XD}_i^r(t) \)

Import

\( \frac{IM_i^r(t)}{XD_i^r(t)}={\left[\frac{PD_i^r(t)}{{\mathrm{PM}}_i^r(t)}\ \frac{\delta_i^r}{\left(1-{\delta}_i^r\right)}\right]}^{\frac{1}{a_i^r+1}} \)

  1. (3)

    Household

Household income

\( {Y}^r(t)=\sum_i\sum_h{WA}^r(t){\mathrm{wdist}}_{hi}^{\kern0.5em r}{H}_{hi}^{\kern0.5em r}(t)+\sum_i{R}^r(t){\mathrm{kdist}}_i^r{K}_i^r(t)+{\mathrm{YSUB}}^r(t) \)

Household consumption

\( \ln \left({CD}_i^{rs}(t)\right)={\alpha}_{0i}^{\kern0.5em rs}+\sum_{h=0}^7{\alpha}_{1h}^{\kern0.75em rs}{D}_h^s(t)+{\alpha}_2^{\kern0.5em rs}{\mathrm{GEND}}^s(t)+\sum_{h=2}^7{\alpha}_{3h}^{\kern0.75em rs} \ln \left({W}_h^r(t)\right) \)

Household saving

\( \ln \left({\mathrm{HSAV}}^r(t)\right)={\beta}_0^{\kern0.5em r}+{\beta}_1^{\kern0.5em r}{\mathrm{GEND}}^r(t)+{\beta}_2^{\kern0.5em r}{\mathrm{NUMH}}^r(t)+{\beta}_3^{\kern0.5em r} \ln \left({\mathrm{DEBT}}^r(t)\right)+\sum_{h=0}^7{\beta}_{4h}^{\kern0.5em r} \ln \left({W}_h^r(t)\right) \)

  1. (4)

    Government

Government revenues

\( \mathrm{GR}(t)=\sum_r\sum_i{\mathrm{IM}}_i^r(t)\mathrm{ER}(t)\left(1+{\mathrm{tm}}_i^r\right)+\sum_i{\mathrm{itax}}_i^r{\mathrm{PVA}}_i^r(t){\mathrm{VA}}_i^r(t)+\sum_r{\mathrm{htax}}^r{Y}^r(t) \)

Government use of funds

\( GE(t)=\mathrm{GSAVE}(t)+SUB(t)+\sum_r\sum_i{\sum}_s{GC}_i^{sr}(t) \)

  1. (5)

    Market equilibrium

Balance of payment

\( \sum_r\sum_i{pwm}_i^r{IM}_i^r(t)+\mathrm{FSAV}(t)=\sum_r\sum_i{pwe}_i^r{\mathrm{EX}}_i^r(t) \)

Labor supply

\( {LS}_h^r(t)={P}_h^r(t){lpr}_h^r \)

Capital market

\( \sum_r{\mathrm{HSAV}}^r(t)+\sum_r\sum_i{\mathrm{depr}}_i^r{\mathrm{PK}}_i^r(t){K}_i^r(t)+\mathrm{FSAV}(t)\mathrm{ER}(t)+\mathrm{GSAVE}(t)=\sum_r\sum_i{\mathrm{IND}}_i^r(t) \)

Sectoral investment

\( {IND}_i^r(t)={\mathrm{INDE}}_i^r(t)+\left({IND}_i^r(t)-{\mathrm{INDE}}_i^r(t)\right) \)

Commodity market

\( {Q}_i^r(t)=\sum_j\sum_s{\mathrm{io}}_{ij}^{rs}{X}_j^s(t)+\sum_s{CD}_i^{rs}(t)+{INV}_i^r(t)+\sum_s{GC}_i^{rs}(t) \)

  1. (6)

    Capital accumulation

Capital accumulation

\( {K}_i^r(t)=\left(1-{\mathrm{depr}}_i^r\right){K}_i^r\left(t-1\right)+{IND}_i^r(t) \)

1.2 Variables

\( {CD}_i^{rs}(t) \)

Private consumption expenditure of sector i of region r by region s

\( {D}_h^r(t) \)

Average number of family members by age cohort (h) by region r

d rs(t)

Physical distance between region r and region s

DEBT r(t)

Household financial asset of region r

ER(t)

Nominal foreign exchange rate (Korean won per dollar)

\( {\mathrm{EX}}_i^r(t) \)

Foreign export of sector i of region r

\( {\mathrm{EXPE}}_h^r(t) \)

Worker’s total years of working experience by age cohort (h) of region r

FSAV(t)

Foreign saving

\( {GC}_i^{sr}(t) \)

Consumption expenditure of sector i of region s by region r

GE(t)

Government expenditures

GENDr(t)

Gender of household (GEND = 1 for male) of region r

GR(t)

Government revenues

GSAVE(t)

Government savings

\( {H}_{hi}^r(t) \)

Human capital stock by age cohort (h) of sector i of region r

\( {HQ}_h^r(t) \)

Quality of labor input by age cohort (h) of region r

HSAVr(t)

Private savings in region r

\( {IM}_i^r(t) \)

Foreign import of sector i of region r

\( {IND}_i^r(t) \)

Investment by destination of sector i of region r

\( {INV}_i^r(t) \)

Investment by origin of sector i of region r

\( {\mathrm{INDE}}_i^r(t) \)

Education investment by destination of sector i of region r

\( {K}_i^r(t) \)

Physical capital stock of sector i of region r

L r(t)

The number of workers in region r

\( {L}_{hi}^r(t) \)

Quantity of labor input of sector i of region r by age cohort (h)

\( {LS}_h^r(t) \)

Labor supply of region r by age cohort (h)

MANUr(t)

Industrial dummy (MANU = 1 for manufacturing sector) of region r

\( {MIG}_h^{rs}(t) \)

The number of gross migrants from region r to region s by age cohort (h)

NUMHr(t)

The number of family members of region r

P r(t)

Population size of region r

\( {P}_h^r(t) \)

Population size of region r by age cohort (h)

\( {PC}_i^r(t) \)

Price of composite goods of sector i of region r

\( {PD}_i^r(t) \)

Domestic goods price of sector i of region r

\( {PE}_i^r(t) \)

Domestic price of foreign exports of sector i of region r

\( {PK}_i^r(t) \)

Price of capital of sector i of region r

\( {\mathrm{PM}}_i^r(t) \)

Domestic price of foreign imports of sector i of region r

\( {PVA}_i^r(t) \)

Value-added price of sector i of region r

\( {PX}_i^r(t) \)

Production price of sector i of region r

\( {Q}_i^r(t) \)

Composite goods of demand of sector i of region r

R r(t)

Average rate capital return of region r

SUB(t)

Total subsidies to both producers and households

\( {\mathrm{TEDU}}_h^r(t) \)

Worker’s total schooling years of region r by age cohort (h)

TOTSAV(t)

Total saving

V r(t)

Gross regional product of region r

\( {VA}_i^r(t) \)

Value added of sector i of region r

\( {W}_h^r(t) \)

Each worker’s wage of region r by age cohort (h)

WAr(t)

Average wage rate of region r

\( {X}_i^r(t) \)

Gross output of sector i of region r

\( {XD}_i^r(t) \)

Consumption of domestically produced goods of sector i of region r

Y r(t)

Total income of household of region r

YSUBr(t)

Subsidies to household of region r

1.3 Parameters

\( {\mathrm{depr}}_i^r \)

Depreciation rate of sector i of region r

\( {\mathrm{hO}}_{hi}^r \)

Shift parameter of human capital

htaxr

Direct tax rate

\( {\mathrm{io}}_{ij}^{rs} \)

Leontief technical input-output coefficient

\( {\mathrm{itax}}_i^r \)

Indirect tax rate

\( {\mathrm{kdist}}_i^r \)

Capital return adjustment parameter of sector i of region r

\( {lpr}_h^r \)

Labor force participation rate of region r by age cohort (h)

\( {pwe}_i^r \)

Export price in world market

\( {pwm}_i^r \)

Import price in world market

\( {svr}_h^r \)

Survival rate of region r by age cohort (h)

\( {tm}_i^r \)

Tariff rate

\( {\mathrm{wdist}}_{hi}^r \)

Wage adjustment parameter of sector i of region r by age cohort(h)

h

Age cohort (h = 0 for 0–9 years old; h = 1 for 10–19 years old; h = 2 for 20–29 years old; h = 3 for 30–39 years old; h = 4 for 40–49 years old; h = 5 for 50–59 years old;

h = 6 for 60–69 years old; h = 7 for over 70 years old)

i(j)

Industrial sector (agriculture, manufacturing, construction, and services)

r(s)

Region (SMA and ROK )

Appendix 2: Model Specification and Parameter Estimates

1.1 Consumption and Saving Functions

The functional types for consumption and saving of regional households are derived from Mankiw and Weil (1989), who attempted to identify how housing demand was affected by changes in the size of different age cohorts. The private consumptions for three industrial goods by region are modeled with gender of household, and the number of family members and income by age cohort serve as an additive function of the demand of its members. The private savings amount by region is also estimated with these consumption determinants and the household asset. The primary data set for estimating these equations is the Korean Labor and Income Panel Study (KLIPS) of the Korea Labor Institute. KLIPS is a longitudinal survey of the labor market and the income activities of households and individuals, including schooling, unemployment experiences, job training and education , working conditions and welfare, income and consumption. The basic structure is similar to NLS, NLSy and PSID of the USA, SLID of Canada, and BHPS of the UK. It has been used for the microeconomic analysis of labor market activities and transitions to assess labor market policies in Korea since the late 1990s.

1.1.1 Private Consumption by Age Cohort

$$ \ln \left({CD}_i^{rs}(t)\right)={\alpha}_{0i}^{rs}+\sum_{h=0}^7{\alpha}_{1h}^{rs}{D}_h^s(t)+{\alpha}_2^{rs}{\mathrm{GEND}}^s(t)+\sum_{h=2}^7{\alpha}_{3h}^{rs} \ln \left({W}_h^r(t)\right) $$

\( {CD}_i^{rs}(t) \)

Private consumption expenditure of sector i of region r by region s

\( {D}_h^r(t) \)

Average number of family members by age cohort (h) by region r

GENDr(t)

Gender of household (GEND = 1 for male) of region r

\( {W}_h^r(t) \)

Worker’s wage of region r by age cohort (h)

h

Age cohort (h = 0 for 0–9 years old; h = 1 for 10–19 years old; h = 2 for 20–29 years old; h = 3 for 30–39 years old; h = 4 for 40–49 years old; h = 5 for 50–59 years old;

h = 6 for 60–69 years old; h = 7 for over 70 years old)

  1. (1)

    SMA region

 

Commodity produced in SMA

Commodity produced in ROK (regional imports)

Primary sector

Manufacturing sector

Service sector

Primary sector

Manufacturing sector

Service sector

Constant

4.167***

4.726***

5.476***

4.166***

4.728***

5.480***

D 0

0.132***

0.039

0.011

0.132***

0.040

0.013

D 1

0.155***

0.108***

0.174***

0.154***

0.108***

0.174***

D 2

0.185***

0.233***

0.294***

0.186***

0.232***

0.291***

D 3

0.234***

0.222***

0.208***

0.234***

0.219***

0.200***

D 4

0.208***

0.107**

0.174***

0.211***

0.110**

0.181***

D 5

0.218***

0.248***

0.226***

0.222***

0.247***

0.224***

D 6

0.245***

0.181***

0.098*

D 6 + D 7

0.215***

0.179***

0.089**

D 7

0.194***

0.180***

0.086*

GEND

0.114***

0.194***

0.256***

0.111***

0.192***

0.252***

ln(W 2)

0.022***

0.090***

0.094***

0.022***

0.090***

0.094***

ln(W 3)

0.030***

0.092***

0.110***

0.031***

0.093***

0.111***

ln(W 4)

0.038***

0.102***

0.110***

0.038***

0.102***

0.109***

ln(W 5)

0.034***

0.091***

0.109***

0.034***

0.091***

0.110***

ln(W 6)

0.031***

0.071***

0.084***

ln(W 6+W 7)

0.035***

0.069***

0.079***

ln(W 7)

v

0.038***

0.059***

0.057***

R 2

0.37

0.23

0.32

0.37

0.23

0.32

  1. *p < 0.10; **p < 0.05; ***p < 0.01
  1. (2)

    ROK region

 

Commodity produced in SMA (regional imports)

Commodity produced in ROK

Primary sector

Manufacturing sector

Service sector

Primary sector

Manufacturing sector

Service sector

Constant

4.139***

4.612***

5.197***

4.139***

4.612***

5.196***

D 0

0.053**

0.008

−0.005

0.055**

0.014

0.002

D 1

0.128***

0.040

0.087

0.129***

0.042

0.089

D 2

0.150***

0.229***

0.322***

0.149***

0.226***

0.319***

D 3

0.215***

0.275***

0.301***

0.211***

0.265***

0.288***

D 4

0.166***

0.084

0.169*

0.175***

0.109

0.198**

D 5

0.187***

0.054

0.062

0.188***

0.057

0.062

D 6

0.189***

0.309***

0.304***

D 6 + D 7

0.126***

0.139*

0.102

D 7

0.088***

0.038

−0.014

GEND

0.246***

0.332***

0.358***

0.234***

0.299***

0.320***

ln(W 2)

0.040***

0.092***

0.105***

0.041***

0.095***

0.109***

ln(W 3)

0.038***

0.109***

0.136***

0.039***

0.114***

0.142***

ln(W 4)

0.048***

0.136***

0.155***

0.048***

0.135***

0.154***

ln(W 5)

0.047***

0.186***

0.210***

0.048***

0.190***

0.215***

ln(W 6)

0.028***

0.077***

0.093***

ln(W 6+W 7)

0.033***

0.090***

0.106***

ln(W 7)

0.022**

0.060**

0.066**

R 2

0.33

0.15

0.22

0.37

0.16

0.22

  1. *p < 0.10; **p < 0.05; ***p < 0.01

1.1.2 Private Savings by Region

$$ \ln \left({\mathrm{HSAV}}^r(t)\right)={\beta}_0^r+{\beta}_1^r{\mathrm{GEND}}^r(t)+{\beta}_2^r{\mathrm{NUMH}}^r(t)+{\beta}_3^r \ln \left({\mathrm{DEBT}}^r(t)\right)+\sum_{h=0}^7{\beta}_{4h}^r \ln \left({W}_h^r(t)\right) $$

HSAVr(t)

Private savings in region r

GENDr(t)

Gender of household (GEND = 1 for male) of region r

NUMHr(t)

The number of family members of region r

DEBTr(t)

Household financial asset of region r

\( {W}_h^r(t) \)

Worker’s wage of region r by age cohort (h)

h

Age cohort (h = 0 for 0–9 years old; h = 1 for 10–19 years old; h = 2 for 20–29 years old; h = 3 for 30–39 years old; h = 4 for 40–49 years old; h = 5 for 50–59 years old;

h = 6 for 60–69 years old; h = 7 for over 70 years old)

 

SMA

ROK

Constant

0.560***

0.084

GEND

−0.074

0.356***

NUMH

0.143***

0.139***

DEBT

−0.014

−0.055***

ln(W 2)

0.577***

0.599***

ln(W 3)

0.544***

0.594***

ln(W 4)

0.450***

0.522***

ln(W 5)

0.510***

0.515***

ln(W 6)

0.434***

0.404***

ln(W 6+W 7)

0.194***

0.273***

R 2

0.29

0.39

  1. *p < 0.10; **p < 0.05; ***p < 0.01

The value added is determined by two types of physical capital stock (K) and human capital by age cohort (H h ). The latter is defined as the number of workers (L h ) multiplied by the quality of human capital possessed by workers (HQ h ).

$$ \ln \left({VA}_i^r(t)\right)={\beta}_{0i}^r+{\beta}_{1i}^r \ln \left({K}_i^r(t)\right)+\left(1-{\beta}_{1i}^r\right)\sum_{h=2}^7{\beta}_{2hi}^r \ln \left({H}_{hi}^r(t)\right) $$
$$ \mathrm{s}.\mathrm{t}\ \sum_{h=2}^7{\beta}_{2 hi}^r=1 $$
$$ {H}_{hi}^r(t)={\mathrm{hO}}_{hi}^r\ {L}_{hi}^r(t)\ {\mathrm{HQ}}_h^r(t) $$

\( {VA}_i^r(t) \)

Value added of sector i of region r

\( {K}_i^r(t) \)

Physical capital stock of sector i of region r

\( {H}_{hi}^r(t) \)

Human capital stock by age cohort (h) of sector i of region r

\( {HQ}_h^r(t) \)

Quality of labor input by age cohort (h) of region r

\( {L}_{hi}^r(t) \)

Quantity of labor input of sector i of region r by age cohort (h)

\( {hO}_{hi}^r \)

Shift parameter of human capital

1.1.3 Wage Function

$$ \ln \left({W}_h^r(t)\right)={\eta}_{0h}^r+{\eta}_{1h}^r \ln \left({\mathrm{EXPE}}_h^r(t)\right)+{\eta}_{2h}^r \ln \left({\mathrm{TEDU}}_h^r(t)\right)+{\eta}_{3h}^r{\mathrm{GEND}}^r(t)+{\eta}_{4h}^r{\mathrm{MANU}}^r(t) $$

\( {W}_h^r(t) \)

Worker’s wage of region r by age cohort (h)

\( {\mathrm{EXPE}}_h^r(t) \)

Worker’s total years of working experience by age cohort (h) of region r

\( {\mathrm{TEDU}}_h^r(t) \)

Worker’s total schooling years of region r by age cohort (h)

GENDr(t)

Gender of household (GEND = 1 for male) of region r

MANUr(t)

Industrial dummy (MANU = 1 for manufacturing sector) of region r

  1. (1)

    SMA

Age cohort

20–29

30–39

40–49

50–59

60–69

Constant

1.986***

2.256***

3.019***

3.016***

3.580***

ln(EXPE)

1.062***

1.007***

0.639***

0.630***

0.194***

ln(TEDU)

0.174***

0.158***

0.184***

0.187***

0.145***

GEND

0.204***

0.323***

0.519***

0.434***

0.487***

MANU

0.010

0.022

0.011

0.157**

0.179

R 2

0.17

0.35

0.49

0.51

0.36

  1. *p < 0.10; **p < 0.05; ***p < 0.01
  1. (2)

    ROK

Age cohort

20–29

30–39

40–49

50–59

60–69

Constant

2.515***

3.025***

2.734***

2.717***

3.727***

ln(EXPE)

0.819***

0.641***

0.733***

0.781***

0.265***

ln(TEDU)

0.188***

0.221***

0.223***

0.203***

0.132***

GEND

0.199***

0.334***

0.462***

0.333***

0.193

MANU

0.170***

0.091***

0.042

0.067

0.158

R 2

0.22

0.42

0.54

0.55

0.23

  1. *p < 0.10; **p < 0.05; ***p < 0.01

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, E., Hewings, G.J.D., Lee, C. (2017). Dynamic Impact of Population Aging on Regional Economies in Korea Using a Recursive-Dynamic Interregional CGE-Population Model. In: Batabyal, A., Nijkamp, P. (eds) Regional Growth and Sustainable Development in Asia. New Frontiers in Regional Science: Asian Perspectives, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-27589-5_10

Download citation

Publish with us

Policies and ethics