Role of Innate Immune Signaling in Nuclear Reprogramming

  • Shu Meng
  • Palas Chanda
  • John P. CookeEmail author


In 2012 Shinya Yamanaka received the Nobel Prize for his discovery of four transcriptional factors that could induce pluripotency when overexpressed in somatic cells. Recently our lab discovered that innate immune signaling is also critical for this process (Lee et al., Cell 151:547–558, 2012). Specifically, we found that activation of the TLR3-NFκB pathway is required for efficient reprogramming by modulating the expression of epigenetic modifiers to favor an open chromatin configuration. Our unpublished data also suggest that activation of other pattern recognition receptors such as TLR4 or RIG-1 may facilitate reprogramming. Transdifferentiation of one somatic cell to another lineage is another form of nuclear reprogramming. We have shown that transdifferentiation of human fibroblasts to endothelial cells, another form of nuclear reprogramming, also requires innate immune signaling (Sayed et al., Circulation 131:300–309, 2015). Thus innate immune signaling plays a key role in nuclear reprogramming by regulating epigenetic plasticity (Fig. 9.1).


Immune signaling Transcriptional factor Nuclear reprogramming Chromatin configuration Transdifferentiation Epigenetic plasticity Induced pluripotent stem cells Fibroblast-derived induced endothelial cells 


  1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680. doi: 10.1038/90609 CrossRefPubMedGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi: 10.1016/j.cell.2006.02.015 CrossRefPubMedGoogle Scholar
  3. Akita K et al (2002) Impaired liver regeneration in mice by lipopolysaccharide via TNF-alpha/kallikrein-mediated activation of latent TGF-beta. Gastroenterology 123:352–364CrossRefPubMedGoogle Scholar
  4. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature 413:732–738CrossRefPubMedGoogle Scholar
  5. Blau HM et al (1985) Plasticity of the differentiated state. Science 230:758–766CrossRefPubMedGoogle Scholar
  6. Boros P, Bromberg JS (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg 6:652–658. doi: 10.1111/j.1600-6143.2005.01228.x CrossRefGoogle Scholar
  7. Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923. doi: 10.1126/science.1115200 CrossRefPubMedGoogle Scholar
  8. Campbell JS, Riehle KJ, Brooling JT, Bauer RL, Mitchell C, Fausto N (2006) Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. J Immunol 176:2522–2528CrossRefPubMedGoogle Scholar
  9. Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107:17668–17673. doi: 10.1073/pnas.1004487107 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen L, Guo S, Ranzer MJ, DiPietro LA (2013) Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol 133:258–267. doi: 10.1038/jid.2012.267 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coban C et al (2010) Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe 7:50–61. doi: 10.1016/j.chom.2009.12.003 CrossRefPubMedGoogle Scholar
  12. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383CrossRefPubMedGoogle Scholar
  13. Desmet CJ, Ishii KJ (2012) Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 12:479–491. doi: 10.1038/nri3247 CrossRefPubMedGoogle Scholar
  14. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280. doi: 10.1038/nature07677 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC (2013) Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med 31:82–94. doi: 10.1055/s-0032-1331802 CrossRefPubMedGoogle Scholar
  16. Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14:546–558. doi: 10.1038/nri3713 CrossRefPubMedGoogle Scholar
  17. Gitlin L et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci 103:8459–8464. doi: 10.1073/pnas.0603082103 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guiducci C et al (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210:2903–2919. doi: 10.1084/jem.20131044 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811–1815. doi: 10.1126/science.1160810 CrossRefPubMedGoogle Scholar
  20. Ha T et al (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234. doi: 10.1016/j.cardiores.2005.05.025 CrossRefPubMedGoogle Scholar
  21. Hayashi H et al (2005) Normal liver regeneration and liver cell apoptosis after partial hepatectomy in tumor necrosis factor-alpha-deficient mice. Liver Int: Off J Int Assoc Study Liver 25:162–170. doi: 10.1111/j.1478-3231.2005.01029.x CrossRefGoogle Scholar
  22. Hiura H et al (2013) Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet 14:32. doi: 10.1186/1471-2156-14-32 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N (2004) The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol 172:1848–1855CrossRefPubMedGoogle Scholar
  24. Israel MA et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220. doi: 10.1038/nature10821 PubMedPubMedCentralGoogle Scholar
  25. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359 CrossRefPubMedGoogle Scholar
  26. Jiang D et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179. doi: 10.1038/nm1315 CrossRefPubMedGoogle Scholar
  27. Kaneko S, Yamanaka S (2013) To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell 12:385–386. doi: 10.1016/j.stem.2013.03.008 CrossRefPubMedGoogle Scholar
  28. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559. doi: 10.1016/j.immuni.2007.10.002 CrossRefPubMedGoogle Scholar
  29. Kato H et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 doi:
  30. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825. doi: 10.1038/sj.cdd.4401850 CrossRefPubMedGoogle Scholar
  31. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384. doi: 10.1038/ni.1863 CrossRefPubMedGoogle Scholar
  32. Kyritsis N et al (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338:1353–1356. doi: 10.1126/science.1228773 CrossRefPubMedGoogle Scholar
  33. Lee J et al (2012) Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151:547–558. doi: 10.1016/j.cell.2012.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94:14614–14619CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li J et al (2013) Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 33:1366–1375. doi: 10.1161/ATVBAHA.112.301167 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lin Q, Fang D, Fang J, Ren X, Yang X, Wen F, Su SB (2011) Impaired wound healing with defective expression of chemokines and recruitment of myeloid cells in TLR3-deficient mice. J Immunol 186:3710–3717. doi: 10.4049/jimmunol.1003007 CrossRefPubMedGoogle Scholar
  37. Londhe P, Davie JK (2013) Interferon-gamma resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis. Sci Signal 6:ra107. doi: 10.1126/scisignal.2004633 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mancuso G et al (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10:587–594. doi: 10.1038/ni.1733 CrossRefPubMedGoogle Scholar
  39. Martins-Taylor K et al (2014) Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum Mol Genet 23:2364–2373. doi: 10.1093/hmg/ddt628 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9CrossRefPubMedGoogle Scholar
  41. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343:338–344. doi: 10.1056/NEJM200008033430506 CrossRefPubMedGoogle Scholar
  42. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397. doi: 10.1038/41131 CrossRefPubMedGoogle Scholar
  43. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. Table of Contents. doi: 10.1128/CMR.00046-08 Google Scholar
  44. Nam YJ et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110:5588–5593. doi: 10.1073/pnas.1301019110 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nguyen HN et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280. doi: 10.1016/j.stem.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nishino K et al (2011) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7:e1002085. doi: 10.1371/journal.pgen.1002085 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Okita K, Nagata N, Yamanaka S (2011) Immunogenicity of induced pluripotent stem cells. Circ Res 109:720–721. doi: 10.1161/RES.0b013e318232e187 CrossRefPubMedGoogle Scholar
  48. Reinhardt P et al (2013) Genetic correction of a LRRK2 mutation in human iPSCs links Parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12:354–367. doi: 10.1016/j.stem.2013.01.008 CrossRefPubMedGoogle Scholar
  49. Sayed N et al (2015) Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 131:300–309. doi: 10.1161/CIRCULATIONAHA.113.007394 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Scheeren FA et al (2014) A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 16:1238–1248. doi: 10.1038/ncb3058 CrossRefPubMedGoogle Scholar
  51. Seki E et al (2005) Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 41:443–450. doi: 10.1002/hep.20603 CrossRefPubMedGoogle Scholar
  52. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218. doi: 10.1016/j.stem.2011.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stairs DB et al (2008) Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One 3:e3534. doi: 10.1371/journal.pone.0003534 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21:1292–1315. doi: 10.1101/gad.1540507 CrossRefPubMedGoogle Scholar
  55. Sun R, Gao B (2004) Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology 127:1525–1539CrossRefPubMedGoogle Scholar
  56. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  57. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187. doi: 10.1152/ajpregu.00735.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Volz KS, Miljan E, Khoo A, Cooke JP (2012) Development of pluripotent stem cells for vascular therapy. Vasc Pharmacol 56(5–6):288–296CrossRefGoogle Scholar
  59. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712. doi: 10.1038/nature09229 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yang J et al (2010) Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 285:40303–40311. doi: 10.1074/jbc.M110.183392 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737. doi: 10.1038/ni1087 CrossRefPubMedGoogle Scholar
  62. Zhang R et al (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498:497–501. doi: 10.1038/nature12322 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zorde-Khvalevsky E et al (2009) Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology 50:198–206. doi: 10.1002/hep.22973 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Cardiovascular Regeneration, Department of Cardiovascular SciencesHouston Methodist Research Institute (HMRI)HoustonUSA

Personalised recommendations