Advertisement

Development and Regeneration of the Vertebrate Brain

  • Brian KeyEmail author
Chapter
  • 834 Downloads

Abstract

The vertebrate brain is hierarchically assembled about orthogonal axes using organizing centers that control cascades of signaling events. The reiterative generation of these centers at defined times, and in precise spatial locations, leads to the conversion of a contiguous and homogenous epithelial sheet into the most complex biological tissue in the animal kingdom. The critical events orchestrating the construction of a “typical” vertebrate brain are described. Attention is focused on specification of major brain regions common across the vertebrate phylogeny, rather than on the differentiation of constituent cell types and specific cytoarchitectures. By uncloaking the complex spatial interactions that unfold temporally during the build of the vertebrate brain, it becomes clear why regeneration of this tissue following injury is such a challenging task. And yet, while mammalian brains fail to regenerate, the brains of non-mammalian vertebrates, such as teleosts, reptiles and amphibians, can successfully reconstitute brain tissue following traumatic injury. Understanding the molecular and cellular bases of this remarkable regenerative capacity is revealing the importance of developmental programs, as well as exposing unexpected roles for extraneous processes such as inflammation. Recent discoveries are now fuelling hope for future therapeutic approaches that will ameliorate the debilitating consequences of brain injury in humans.

Keywords

Morphogen Development Neural plate Neuroepithelium Regeneration Development Brain 

Notes

Disclosure Statement

The author states that he has not been paid for this work and has no conflict of interest.

References

  1. Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290PubMedGoogle Scholar
  2. Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, Strähle U, Götz M, Bally-Cuif L (2006) Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 295:278–293PubMedCrossRefGoogle Scholar
  3. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456PubMedCrossRefGoogle Scholar
  4. Almli LM, Wilczynski W (2007) Regional distribution and migration of proliferating cell populations in the adult brain of Hyla cinerea (Anura, Amphibia). Brain Res 1159:112–118PubMedCrossRefGoogle Scholar
  5. Alvarado-Mallart R-M (2005) The chick/quail transplantation model: discovery of the isthmic organizer center. Brain Res Rev 49:109–113PubMedCrossRefGoogle Scholar
  6. Anderson RM, Lawrence AR, Stottman RW, Bachiller D, Klingensmith J (2002) Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129:4975–4987PubMedGoogle Scholar
  7. Angeles Luque M, Perez-Perez MP, Herrero L, Torres B (2005) Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. Brain Res Rev 49:388–397PubMedCrossRefGoogle Scholar
  8. Assimacopoulos S, Kao T, Issa NP, Grove EA (2012) Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography. J Neurosci 32:7191–7201PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bailey P (1916) Morphology of the roof plate of the forebrain and the lateral choroid plexuses in the human embryo. J Comp Neurol 26:79–120CrossRefGoogle Scholar
  10. Ballintijn CM, Roberts JL (1976) Neural control and proprioceptive load matching in reflex respiratory movements of fishes. Fed Proc 35:1983–1991PubMedGoogle Scholar
  11. Barbosa JS, Sanchez-Gonzalez R, Di Giaimo R, Baumgart EV, Theis FJ, Götz M, Ninkovic J (2015) Live imaging of adult neural stem cell behaviour in the intact and injured zebrafish brain. Science 348:789–793PubMedCrossRefGoogle Scholar
  12. Bardet SM, Ferran JLE, Sanchez-Arrones L, Puelles L (2010) Ontogenetic expression of Sonic hedgehog in the chick subpallium. Front Neuroanat 4:28PubMedPubMedCentralGoogle Scholar
  13. Barreiro-Iglesias A, Villar-Cheda B, Abalo X-M, Anadon R, Rodicio MC (2008) The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey. Brain Res Bull 75:42–52PubMedCrossRefGoogle Scholar
  14. Bartelmez GW (1923) The subdivisions of the neural folds in man. J Comp Neurol 35:231–247CrossRefGoogle Scholar
  15. Bell E, Wingate RJT, Lumsden A (1999) Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284:2168–2171PubMedCrossRefGoogle Scholar
  16. Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24PubMedCrossRefGoogle Scholar
  17. Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A (2010) Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 137:4127–4134PubMedCrossRefGoogle Scholar
  18. Berg DA, Kirkham M, Wang H, Frisén J, Simon A (2011) Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell 8:426–433PubMedCrossRefGoogle Scholar
  19. Bernardini S, Gargiolo C, Cannata SM, Filoni S (2010) Neurogenesis during optic tectum regeneration in Xenopus laevis. Develop Growth Differ 52:365–376CrossRefGoogle Scholar
  20. Bernstein JJ (1967) The regenerative capacity of the telencephalon of the goldfish and rat. Exp Neurol 17:44–56PubMedCrossRefGoogle Scholar
  21. Bishop KM, Goudreau G, O’Leary DDM (2000) Regulation of area identity in mammalian neocortex by Emx2 and Pax6. Science 288:344–349PubMedCrossRefGoogle Scholar
  22. Bonfanti L (2011) From hydra regeneration to human brain structural plasticity: a long trip through narrowing roads. Sci World J 11:1270–1299CrossRefGoogle Scholar
  23. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88PubMedCrossRefGoogle Scholar
  24. Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31PubMedCrossRefGoogle Scholar
  25. Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257PubMedCrossRefGoogle Scholar
  26. Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc Roy Soc Lond Ser B Biol Sci 153:503–534CrossRefGoogle Scholar
  27. Butler AB (2000a) Chordate evolution and the origin of the craniates: an old brain in a new head. Anat Rec 261:111–125PubMedCrossRefGoogle Scholar
  28. Butler AB (2000b) Topography and topology of the teleost telencephalon: a paradox resolved. Neurosci Lett 293:95–98PubMedCrossRefGoogle Scholar
  29. Caballero IM, Manuel MN, Molinek M, Quintana-Urzainqui I, Mi D, Shimogori T, Price DJ (2014) Cell-autonomous repression of Shh by transcription factor Pax6 regulates diencephalic patterning by controlling the central diencephalic organizer. Cell Rep 8:1405–1418PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cao M, Shu N, Cao Q, Wang Y, He Y (2014) Imaging functional and structural connectivity. Mol Neurobiol 50:1111–1123PubMedCrossRefGoogle Scholar
  31. Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855–2865PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chatterjee M, Li JYH (2012) Patterning and compartment formation in the diencephalon. Front Neuroanat 6:66Google Scholar
  33. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cycle exit. Science 297:365–369PubMedCrossRefGoogle Scholar
  34. Choi H, Kubicki M, Whitford TJ, Alvarado JL, Terry DP, Niznikiewicz M, McCarley RW, Kwon JS, Shenton ME (2011) Diffusion tensor imaging of anterior commissural fibers in patients. Schizophr Res 130:78–85PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cholfin JA, Rubenstein JLR (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17 and Emx2. J Comp Neurol 509:144–155PubMedPubMedCentralCrossRefGoogle Scholar
  36. Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Gene Dev 7:13–28PubMedCrossRefGoogle Scholar
  37. Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult zebrafish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23CrossRefGoogle Scholar
  38. Cobos I, Shimamura K, Rubenstein JLR, Martinez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Development 239:46–67Google Scholar
  39. Creuzet SE, Martinez S, Le Douarin NM (2006) The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci U S A 103:14033–14038PubMedPubMedCentralCrossRefGoogle Scholar
  40. Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451PubMedGoogle Scholar
  41. Crossley PH, Martinez S, Ohkubo Y, Rubenstein JLR (2001) Coordinate expression of FGF8, OTX2, BMP4, and SHH in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108:183–206PubMedCrossRefGoogle Scholar
  42. Dale L, Howes G, Price BMJ, Smith JC (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115:573–585PubMedGoogle Scholar
  43. Davidson D, Graham E, Sime C, Hill R (1988) A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104:305–316PubMedGoogle Scholar
  44. De Brunie FT, van Wezel-Meijler G, Leijser LM, Steggerda SJ, van den Berg-Huysmans AA, Rijken M, van Buchem MA, van der Grond J (2013) Tractography of white-matter tracts in very preterm infants. Dev Med Child Neurol 55:427–433CrossRefGoogle Scholar
  45. De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302PubMedPubMedCentralCrossRefGoogle Scholar
  46. Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropoathol 85:573–585CrossRefGoogle Scholar
  47. del Grande P, Ciani F, Franceschini V, Minelli G (1982) Acetylcholinesterase reappearance in the early reparative process in the optic tectum of newt. An electron microscopic study. Basic Appl Histochem 26:271–278PubMedGoogle Scholar
  48. del Grande P, Franceschini V, Minelli G, Ciani F (1984) Matrix area activity in the regenerating optic tectum of Rana esculenta. Z Mikrosk Anat Forsch 98:72–80PubMedGoogle Scholar
  49. Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signaling in addition to BMP inhibition. Development 132:299–310PubMedCrossRefGoogle Scholar
  50. Dennis EL, Thompson PM (2013) Mapping connectivity in the developing brain. Int J Dev Neurosci 31:525–542PubMedCrossRefGoogle Scholar
  51. Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198PubMedCrossRefGoogle Scholar
  52. Desmond ME, Levitan ML (2002) Brain expansion in the chick embryo initiated by experimentally produced occlusion of the spinal neurocoel. Anat Rec 268:147–159PubMedCrossRefGoogle Scholar
  53. Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 157:474–483PubMedCrossRefGoogle Scholar
  54. Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568PubMedCrossRefGoogle Scholar
  55. Eagleson GW, Dempewolf RD (2002) The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp Biochem Physiol B 132:179–189PubMedCrossRefGoogle Scholar
  56. Eagleson G, Ferreiro B, Harris WA (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J Neurobiol 28:146–158PubMedCrossRefGoogle Scholar
  57. Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JLR (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217–237PubMedCrossRefGoogle Scholar
  58. Endo T, Yoshino J, Kado K, Tochini S (2007) Brain regeneration in anuran amphibians. Develop Growth Differ 49:121–129CrossRefGoogle Scholar
  59. Esposito A, Demeurisse G, Alberti B, Fabbro F (1999) Complete mutism after midbrain periaqueductal gray lesion. Neuroreport 10:681–685PubMedCrossRefGoogle Scholar
  60. Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63:39–50PubMedCrossRefGoogle Scholar
  61. Ferretti P, Prasongchean W (2015) Adult neurogenesis and regeneration: focus on nonmammalian vertebrates. In: Kuhn HG, Eisch AJ (eds) Neural stem cells in development, adulthood and disease. Springer, New York, pp 1–21Google Scholar
  62. Folgueira M, Bayley P, Navratilova P, Becker TS, Wilson SW, Clarke JDW (2012) Morphogenesis underlying the development of the everted telencephalon. Neural Dev 7:32PubMedPubMedCentralCrossRefGoogle Scholar
  63. Font E, Garcia-Verdugo JM, Alcántara S, López-Garcia C (1991) Neuron regeneration reverses 3-acetylpyridine-induced cell loss in the cerebral cortex of adult lizards. Brain Res 551:230–235PubMedCrossRefGoogle Scholar
  64. Font E, Desfilis E, Pérez-Cañellas MM, Garcia-Verdugo JM (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 58:276–295PubMedCrossRefGoogle Scholar
  65. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074PubMedCrossRefGoogle Scholar
  66. Furuta Y, Piston DW, Hogan BLM (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212PubMedGoogle Scholar
  67. Garcia-Lopez R, Pombero A, Martinez S (2009) Fate map of the chick embryo neural tube. Develop Growth Differ 51:145–165CrossRefGoogle Scholar
  68. Garcia-Verdugo JM, Ferrón S, Flames N, Collado L, Desfilis E, Font E (2002) The proliferative zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 57:765–775PubMedCrossRefGoogle Scholar
  69. Garda A-L, Echevarria D, Martinez S (2001) Neuroepithelial co-expression of Gbx2 and Otx2 precedes Fgf8 expression in the isthmic organizer. Mech Dev 101:111–118PubMedCrossRefGoogle Scholar
  70. Gehring WJ (1987) Homeo boxes in the study of development. Science 236:1245–1252PubMedCrossRefGoogle Scholar
  71. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362PubMedCrossRefGoogle Scholar
  72. Godsave SF, Slack JMW (1989) Clonal analysis of mesoderm induction in Xenopus laevis. Dev Biol 134:486–490PubMedCrossRefGoogle Scholar
  73. Godsave SF, Slack JMW (1991) Single cell analysis of mesoderm formation in the Xenopus embryo. Development 111:523–530PubMedGoogle Scholar
  74. Goodson JL, Bass AH (2002) Vocal-acoustic circuitry and descending vocal pathways in teleost fish: convergence with terrestrial vertebrates reveals conserved traits. J Comp Neurol 448:298–322PubMedCrossRefGoogle Scholar
  75. Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277PubMedCrossRefGoogle Scholar
  76. Green JBA, Howes G, Symes K, Cooke J, Smith JC (1990) The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development 108:173–183PubMedGoogle Scholar
  77. Green JBA, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71:731–739PubMedCrossRefGoogle Scholar
  78. Grove EA, Tole S, Limon J, Yip L-W, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325PubMedGoogle Scholar
  79. Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71:574–588PubMedCrossRefGoogle Scholar
  80. Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpretation. Nature 413:797–803PubMedCrossRefGoogle Scholar
  81. Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521PubMedCrossRefGoogle Scholar
  82. Hamasaki T, Leingärtner A, Ringstedt T, O’Leary DDM (2004) EMX2 regulates the size and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43:359–372PubMedCrossRefGoogle Scholar
  83. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedCrossRefGoogle Scholar
  84. Hannibal RL, Patel NH (2013) What is a segment? EvoDevo 4:35PubMedPubMedCentralCrossRefGoogle Scholar
  85. Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667PubMedCrossRefGoogle Scholar
  86. Hartenstein V, Cardona A, Pereanu W, Younossi-Hartenstein A (2008) Modeling the developing Drosophila brain: rationale, technique, and application. BioSci 58:823–836CrossRefGoogle Scholar
  87. Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17:R29–R35PubMedCrossRefGoogle Scholar
  88. Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7, e10000101CrossRefGoogle Scholar
  89. Hashimoto M, Hibi M (2012) Development and evolution of cerebellar neural circuits. Dev Growth Differ 54:373–389PubMedCrossRefGoogle Scholar
  90. Hashimoto H, Itoh M, Yamanaka Y, Yasashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217:138–152PubMedCrossRefGoogle Scholar
  91. Hawley AHB, Wunnenberg-Stapleton K, Hashimoto C, Laurnet MN, Watabe T, Blumberg BW, Cho KWY (1995) Disruption of BMP signals in embryonic ectoderm leads to direct neural induction. Gene Dev 9:2923–2935PubMedCrossRefGoogle Scholar
  92. Hayes WP, Meyer RI (1988) Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP-EM evidence that optic fibers compete for fixed numbers of postsynaptic sites on the tectum. J Comp Neurol 274:539–559PubMedCrossRefGoogle Scholar
  93. Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neutralization in Xenopus. Cell 77:273–281PubMedCrossRefGoogle Scholar
  94. Hemmati-Brivanlou A, Melton DA (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88:13–17PubMedCrossRefGoogle Scholar
  95. Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89PubMedCrossRefGoogle Scholar
  96. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295PubMedCrossRefGoogle Scholar
  97. Herrman E, Call J, Herandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialised skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366CrossRefGoogle Scholar
  98. Hjorth JT, Key B (2001) Are pioneer axons guided by regulatory gene expression domains in the zebrafish forebrain? High-resolution analysis of the patterning of the zebrafish brain during axon tract formation. Dev Biol 229:271–286PubMedCrossRefGoogle Scholar
  99. Hjorth JT, Key B (2002) Development of axon pathways in the zebrafish central nervous system. Int J Dev Biol 46:609–619PubMedGoogle Scholar
  100. Hoch RV, Rubenstein JLR, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Sem Cell Dev Biol 20:378–386CrossRefGoogle Scholar
  101. Hoch RV, Clarke JA, Rubenstein JLR (2015) Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev 10:8PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory. Biol Bull 210:308–317PubMedCrossRefGoogle Scholar
  103. Holtfreter J (1944) Neural differentiation of ectoderm through exposure to saline solution. J Exp Zool 95:307–343CrossRefGoogle Scholar
  104. Hoppler S, Moon RT (1998) BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129PubMedCrossRefGoogle Scholar
  105. Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383PubMedCrossRefGoogle Scholar
  106. Ito Y, Tanaka H, Okamoto H, Ohshima T (2010) Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 342:26–38PubMedCrossRefGoogle Scholar
  107. Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741PubMedCrossRefGoogle Scholar
  108. Juraver-Geslin HA, Gomez-Skarmeta JL, Durand BC (2014) The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodenticle-2 and together with Iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic hedgehog. Dev Biol 396:107–120PubMedCrossRefGoogle Scholar
  109. Kasberg AD, Brunskill EW, Potter SS (2013) SP8 regulates signaling centers during craniofacial development. Dev Biol 381:312–323PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kaslin J, Ganz J, Brand M (2008) Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Phil Trans R Soc 363:101–122CrossRefGoogle Scholar
  111. Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H (2000) Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91:43–52PubMedCrossRefGoogle Scholar
  112. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634PubMedCrossRefGoogle Scholar
  113. Kengaku M, Okamoto H (1993) Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119:1067–1078PubMedGoogle Scholar
  114. Kengaku M, Okamoto H (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121:3121–3130PubMedGoogle Scholar
  115. Key B (2003) Molecular development of the frog. In: Jamieson B (ed) Reproductive biology and phylogeny of anura. Science Publishers, Inc., New Hampshire, pp 411–436Google Scholar
  116. Kiecker C, Lumsden A (2004) Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7:1242–1249PubMedCrossRefGoogle Scholar
  117. Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564PubMedCrossRefGoogle Scholar
  118. Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367PubMedCrossRefGoogle Scholar
  119. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201PubMedGoogle Scholar
  120. Kirkham M, Hameed LS, Berg DA, Wang H, Simon A (2014) Progenitor cell dynamics in the newt telencephalon during homeostasis and neuronal regeneration. Stem Cell Rep 2:507–519CrossRefGoogle Scholar
  121. Kirsche W (1983) The significance of matrix zones for brain regeneration and brain transplantation with special considerations of lower vertebrates. In: Wallace RB, Das GD (eds) Neural tissue transplantation research. Springer, New YorkGoogle Scholar
  122. Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of brain injury. Dis Mod Mech 5:200–209CrossRefGoogle Scholar
  123. Kittelberger JM, Bass AH (2013) Vocal-motor and auditory connectivity of the midbrain periaqueductal tray in a teleost fish. J Comp Neurol 521:791–812PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kittelberger JM, Land BR, Bass AH (2006) Midbrain periaqueductal gray and vocal patterning in a teleost fish. J Neurophysiol 96:71–85PubMedCrossRefGoogle Scholar
  125. Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93PubMedGoogle Scholar
  126. Koester SE, O’Leary DDM (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14:6608–6620PubMedGoogle Scholar
  127. Köster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26:7293–7304PubMedCrossRefGoogle Scholar
  128. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841PubMedCrossRefGoogle Scholar
  129. Kumral E, Uzunkopru C, Ciftci S, Demirci T (2011) Acute respiratory failure due to unilateral dorsolateral bulbar infarction. Eur Neurol 66:70–74PubMedCrossRefGoogle Scholar
  130. Kuratani S, Horigome N, Ueki T, Aizawa S, Hirano S (1998) Stereotyped axonal bundles formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. J Comp Neurol 391:99–114PubMedCrossRefGoogle Scholar
  131. Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in adult zebrafish brain. Science 338:1353–1356PubMedCrossRefGoogle Scholar
  132. Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24:128–135PubMedCrossRefGoogle Scholar
  133. Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domené S, Vélez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, Vanallen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njølstad PR, Brunner HG, Carey JC, Hehr U, Müsebeck J, Wieacker PF, Postra A, Hennekam RC, van den Boogaard MJ, van Haeringen A, Paulussen A, Herbergs J, Schrander-Stumpel CT, Janecke AR, Chitayat D, Hahn J, McDonald-McGinn DM, Zackai EH, Dobyns WB, Muenke M (2009) Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 46:389–398PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17:368–379PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lam CS, März M, Strähle U (2009) gfap and nestin reporter lines reveal characteristics of neural porgenitors in the adult zebrafish brain. Dev Dyn 238:475–486PubMedCrossRefGoogle Scholar
  136. Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718PubMedCrossRefGoogle Scholar
  137. Lander AD (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–256PubMedCrossRefGoogle Scholar
  138. Larsen CW, Zeltser LM, Lumsden A (2001) Boundary formation and competition in the avian diencephalon. J Neurosci 21:4699–4711PubMedGoogle Scholar
  139. Lavado A, Lagutin OV, Oliver G (2008) Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135:441–450PubMedCrossRefGoogle Scholar
  140. Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467PubMedGoogle Scholar
  141. Levitt JJ, Kubicki M, Nestor PG, Ersner-Hershfield H, Westin CF, Alvarado JL, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2011) A diffusion tensor imaging study of the anterior limb of the internal capsule. Psychol Res 184:143–150Google Scholar
  142. Li JYH, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991PubMedGoogle Scholar
  143. Linzenbold W, Lindig T, Himmelbach M (2011) Functional neuroimaging of the oculomotor brainstem network in humans. Neuroimage 57:1116–1123PubMedCrossRefGoogle Scholar
  144. Liu A, Joyner AL (2001) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181–191PubMedGoogle Scholar
  145. Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 43:167–174CrossRefGoogle Scholar
  146. Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. TINS 13:329–335PubMedGoogle Scholar
  147. Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088.Google Scholar
  148. Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  149. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN et al (2012) Consensus paper: roles of the cerebellum in motor control – the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487PubMedPubMedCentralCrossRefGoogle Scholar
  150. Marin F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversion: a polarizing activity from the isthmus. Dev Biol 163:19–37PubMedCrossRefGoogle Scholar
  151. Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC, Dollé P, Lumsden A, Champon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338PubMedGoogle Scholar
  152. Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128:4789–4800PubMedGoogle Scholar
  153. März M, Schmidt R, Rastegar S, Strähle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240:2221–2231PubMedCrossRefGoogle Scholar
  154. Mastick GS, Easter SS (1996) Initial organization of neurons and tracts in the embryonic mouse fore- and midbrain. Dev Biol 173:79–94PubMedCrossRefGoogle Scholar
  155. Mastick GS, Davis NM, Andrews GL, Easter SS (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124:1985–1997PubMedGoogle Scholar
  156. McDowell N, Zorn AM, Crease DJ, Gurdon JB (1997) Activin has direct long-range signalling activity and can form a concentration gradient by diffusion. Curr Biol 7:671–681PubMedCrossRefGoogle Scholar
  157. McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D (2015) The median preoptic nucleus: front and center for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol 214:8–32CrossRefGoogle Scholar
  158. Melton DA (1991) Pattern formation during animal development. Science 252:234–241PubMedCrossRefGoogle Scholar
  159. Minelli G, del Grande P, Mambelli MC (1977) Preliminary study of the regenerative processes of the dorsal cortex of the telencephalon of Lacerta viridis. Z Mikrosk Anat Forsch 91:241–256PubMedGoogle Scholar
  160. Minelli G, Franceschini V, del Grande P, Ciani F (1987) Newly-formed neurons in the regenerating optic tectum of Triturus cristatus carnifex. Basic Appl Histochem 31:43–52PubMedGoogle Scholar
  161. Minelli G, del Grande P, Franceschini V, Ciani F (1990) Proliferative response of the mesencephalic matrix areas in the reparation of the optic tectum of Triturus cristatus carnifex. Z Mikrosk Anat Forsch 104:17–25PubMedGoogle Scholar
  162. Moldrich RX, Gobius I, Pollack T, Zhang J, Ren T, Brown L, Mori S, de Juan Romero C, Britanova O, Tarabykin V, Richards LJ (2010) Molecular recognition of the developing commissural plate. J Comp Neurol 518:3645–3661PubMedPubMedCentralCrossRefGoogle Scholar
  163. Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604PubMedCrossRefGoogle Scholar
  164. Moreno N, Gonzalez A (2011) The non-evaginated secondary prosencephalon of vertebrates. Front Neuroanat 5:1–9CrossRefGoogle Scholar
  165. Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dorsal pallioum in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381:95–105PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Izpisúa Belmonte JC, Westphal H (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434PubMedCrossRefGoogle Scholar
  167. Müller F, O’Rahilly R (1984) Cerebral dysgraphia (future anencephaly) in a human twoin embryo at stage 13. Tetratol 30:167–177CrossRefGoogle Scholar
  168. Nakamura H, Sato T, Suzuki-Hirano A (2008) Isthmus organizer for mesencephalon and metencephalon. Develop Growth Differ 50:S113–S118CrossRefGoogle Scholar
  169. Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2206PubMedGoogle Scholar
  170. Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M (2013) Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev Cell 27:621–634PubMedCrossRefGoogle Scholar
  171. Northam GB, Liégeois F, Tournier JD, Croft LJ, Johns PN, Chong WK, Wyatt JS, Baldeweg T (2012) Interhemispheric temporal lobe connectivity predicts language impairment. Brain 135:3781–3798PubMedPubMedCentralCrossRefGoogle Scholar
  172. Northcutt RG (2008) Forebrain evolution in bony fishes. Brain Res Bull 75:191–205PubMedCrossRefGoogle Scholar
  173. O’Leary DMM, Chou S-J, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269PubMedCrossRefGoogle Scholar
  174. O’Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat 104:123–133PubMedCrossRefGoogle Scholar
  175. O’Rahilly R, Müller F (2008) Significant features in the early prenatal development of the human brain. Ann Anat 190:105–118PubMedCrossRefGoogle Scholar
  176. Oelgeschlager M, Kuroda H, Reversade B, De Robertis EM (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryo. Dev Cell 4:219–230PubMedCrossRefGoogle Scholar
  177. Olivera-Pasilio V, Peterson DA, Castello ME (2014) Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum. Front Neuroanat 8:88PubMedPubMedCentralCrossRefGoogle Scholar
  178. Orioli IM, Castilla EE (2010) Epidemiology of holoprosencephalon: prevalence and risk factors. Am J Med Genet Part C (Sem Med Genet) 154C:13–21CrossRefGoogle Scholar
  179. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centers. Nature 483:289–294PubMedPubMedCentralCrossRefGoogle Scholar
  180. Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2881–2887PubMedCrossRefGoogle Scholar
  181. Perez-Perez MP, Luque MA, Herrero L, Nunez-Abades PA, Torres B (2003) Connectivity of the goldfish optic tectum with the mesencephalic and rhombencephalic reticular formation. Exp Brain Res 151:123–135PubMedCrossRefGoogle Scholar
  182. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  183. Pombero A, Martinez S (2009) Telencephalic morphogenesis during the process of neurulation: an experimental study using quail-chick chimeras. J Comp Neurol 512:784–797PubMedCrossRefGoogle Scholar
  184. Prager-Khoutorsky M, Bourque CW (2015) Anatomical organization of the rat organum vasculosum laminae terminalis. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00134.2015 PubMedGoogle Scholar
  185. Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. TINS 26:469–476PubMedGoogle Scholar
  186. Puelles L, Rubenstein JLR (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27PubMedPubMedCentralCrossRefGoogle Scholar
  187. Puelles L, Domenech-Ratto G, Martinez-de-la-Torre M (1987) Location of the rostral end of the longitudinal brain axis: review of an old topic in the light of marking experiments on the closing rostral neuropore. J Morphol 194:163–171PubMedCrossRefGoogle Scholar
  188. Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–576PubMedCrossRefGoogle Scholar
  189. Quartz SR (2003) Toward a developmental evolutionary psychology. Genes, development, and the evolution of the human cognitive architecture. In: Scher SJ, Raucher F (eds) Evolutionary psychology: alternative approaches. Springer, US, pp 185–210Google Scholar
  190. Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72PubMedCrossRefGoogle Scholar
  191. Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157PubMedCrossRefGoogle Scholar
  192. Raymond PA, Easter SS (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 3:1077–1091PubMedGoogle Scholar
  193. Reifers F, Walsh EC, Leger S, Stainier DYR, Brand M (2000) Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127:225–235PubMedGoogle Scholar
  194. Rhinn M, Dierich A, Shawlot W, Behringer RR, Le Meur M, Ang SL (1998) Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125:845–856PubMedGoogle Scholar
  195. Robertshaw E, Kiecker C (2012) Phylogenetic origins of brain organizers. Scientifica 2012:475017PubMedPubMedCentralCrossRefGoogle Scholar
  196. Robertshaw E, Matsumoto K, Lumsden A, Kiecker C (2013) Irx3 and pax6 establish differential competence for Shh-mediated induction of GABAergic and glutamatergic neurons of the thalamus. Proc Natl Acad Sci U S A 110:E3919–E3926PubMedPubMedCentralCrossRefGoogle Scholar
  197. Rodriguez F, Duran E, Gomez A, Ocana FM, Alvarez E, Jimenez-Moya F, Briglio C, Salas C (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370PubMedCrossRefGoogle Scholar
  198. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257PubMedCrossRefGoogle Scholar
  199. Ruiz I Altaba A (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 115:67–80Google Scholar
  200. Ruiz I Altaba A, Melton DA (1989) Interaction between peptide growth factors and homeobox genes in the establishment of antero-posterior polarity in frog embryos. Nature 341:33–38PubMedCrossRefGoogle Scholar
  201. Sahir N, Bahi N, Evrard P, Gressens P (2000) Caffeine induces in vivo premature appearance of telencephalic vesicles. Dev Brain Res 121:213–217CrossRefGoogle Scholar
  202. Sasai Y, Lu B, Steinbeisser H, Gelssert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790PubMedPubMedCentralCrossRefGoogle Scholar
  203. Sater AK, Steinhardt RA, Keller R (1993) Induction of neuronal differentiation by planar signals in Xenopus embryos. Dev Dyn 197:268–280PubMedCrossRefGoogle Scholar
  204. Sauleau P, Pollak P, Krack P, Courjon JH, Vighetto A, Benabid AL, Pélisson D, Tilikete C (2008) Subthalamic stimulation improves orienting gaze movements in Parkinson’s disease. Clin Neurophysiol 119:1857–1863PubMedCrossRefGoogle Scholar
  205. Schoenwolf GC (1979) Observations on closure of the neuropores in the chick embryo. Am J Anat 155:445–466PubMedCrossRefGoogle Scholar
  206. Scholpp S, Foucher I, Staudt N, Peukert D, Lunsden A, Houart C (2007) Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 134:3167–3176PubMedCrossRefGoogle Scholar
  207. Scott MY (1977) Behavioral tests of compression of retinotectal projection after partial tectal ablation in goldfish. Exp Neurol 54:579–590PubMedCrossRefGoogle Scholar
  208. Segaar J (1961) Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour 18:256–287CrossRefGoogle Scholar
  209. Selleck SB (2006) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212CrossRefGoogle Scholar
  210. Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961PubMedCrossRefGoogle Scholar
  211. Sereno AB, Briand KA, Amador SC, Szapiel SV (2006) Disruption of reflexive attention and eye movements in an individual with a collicular lesion. J Clin Exp Neuropsychol 28:145–166PubMedCrossRefGoogle Scholar
  212. Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M (2001a) Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zool Sci 18:527–541CrossRefGoogle Scholar
  213. Shigeno S, Tsuchiya K, Segawa S (2001b) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475PubMedCrossRefGoogle Scholar
  214. Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMedGoogle Scholar
  215. Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933PubMedGoogle Scholar
  216. Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004) Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131:5639–5647PubMedCrossRefGoogle Scholar
  217. Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000) Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from prechordal plate and patterns the anterior neural plate. Mech Dev 98:3–17PubMedCrossRefGoogle Scholar
  218. Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29PubMedCrossRefGoogle Scholar
  219. Skaggs K, Goldman D, Parent JM (2014) Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 62:2061–2079PubMedPubMedCentralCrossRefGoogle Scholar
  220. Slack JMW (1984) In vitro development of isolated ectoderm from axolotl gastrulae. J Embryol Exp Morphol 80:321–330PubMedGoogle Scholar
  221. Slack JMW, Forman D (1980) An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. Embryol Exp Morphol 56:283–299Google Scholar
  222. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840PubMedCrossRefGoogle Scholar
  223. Smith JC, Price BMJ, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345:729–731PubMedCrossRefGoogle Scholar
  224. Smith JC, Abdala APL, Borgman A, Rybak IA, Paton JFR (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162PubMedPubMedCentralCrossRefGoogle Scholar
  225. Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15:247–262PubMedPubMedCentralGoogle Scholar
  226. Stevenson JA, Yoon M (1980) Kinetics of cell proliferation in the halved tectum of adult goldfish. Brain Res 184:11–22PubMedCrossRefGoogle Scholar
  227. Stoykova A, Fritsch R, Walther C, Gruss P (1996) Forebrain patterning defects in Small eye mutant mice. Development 122:3453–3465PubMedGoogle Scholar
  228. Streeter GL (1927) Archetypes and symbolism. Science 65:405–412PubMedCrossRefGoogle Scholar
  229. Suárez R, Gobius I, Richards LR (2014) Evolution and development of interhemispheric connections in the vertebrate brain. Front Hum Neurosci 8:497PubMedPubMedCentralCrossRefGoogle Scholar
  230. Sultan P, Gutierrez MC, Carvalho B (2011) Neuraxial morphine and respiratory depression: finding the right balance. Drugs 71:1807–1819PubMedCrossRefGoogle Scholar
  231. Szabo NE, Zhao TY, Zhou XL, Alvarez-Bolado G (2009) The role of sonic hedgehog of neural origin in thalamic differentiation in the mouse. J Neurosci 29(8):2453–2466PubMedCrossRefGoogle Scholar
  232. Tao Y, Ruan H, Guo X, Li L, Shen W (2015) HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum. PLoS One 10(3):e0120118PubMedPubMedCentralCrossRefGoogle Scholar
  233. Temple S (2001) The development of neural stem cells. Nature 414:112–117PubMedCrossRefGoogle Scholar
  234. ten Donkelaar HJ, Yamada S, Shiota K, van der Vliet T (2014) Overview of the development of the human brain and spinal cord. In: ten Donkelaar HJ, Lsammens M, Hori A (eds) Clinical neuroembryology. Development and developmental disorders of the human central nervous system, 2nd edn. Springer, Berlin, pp 1–51Google Scholar
  235. Terao Y, Fukuda H, Shirota Y, Yugeta A, Yoshioka M, Suzuki M, Hanajima R, Nomura Y, Segawa M, Tsuji S, Ugawa Y (2013) Deterioration of horizontal saccades in progressive supranuclear palsy. Clin Neurophysiol 124:354–363PubMedCrossRefGoogle Scholar
  236. Theil T, Alvarez-Bolado G, Walter A, Rüther U (1999) Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126:3561–3571PubMedGoogle Scholar
  237. Theil T, Aydin S, Koch S, Grotewold L, Rüther U (2002) Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129:3045–3054PubMedGoogle Scholar
  238. Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493PubMedCrossRefGoogle Scholar
  239. Tian E, Kimura C, Takeda N, Aizawa S, Matsuo I (2002) Otx2 is required to respond to signals from the anterior neural ridge for forebrain specification. Dev Biol 242:204–223PubMedCrossRefGoogle Scholar
  240. Torres B, Luque MA, Perez-Perez MP, Herrero L (2005) Visual orienting response in goldfish: a multidisciplinary study. Brain Res Bull 66:376–380PubMedCrossRefGoogle Scholar
  241. Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA (2010) FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 137:3439–3448PubMedPubMedCentralCrossRefGoogle Scholar
  242. Udin SB (1977) Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation. J Comp Neurol 173:561–582PubMedCrossRefGoogle Scholar
  243. van den Eijnden-Van Raaij AJM, van Zoelent EJJ, van Nimmen K, Koster CH, Snoek GT, Durston AJ, Huylebroeck D (1990) Activin-like factor from a Xenopus cell line responsible for mesoderm induction. Nature 345:733–734Google Scholar
  244. Wang Y, Song L, Zhou CJ (2011) The canonical Wnt/β-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 349:250–260PubMedCrossRefGoogle Scholar
  245. Wang Z, Dai Z, Gong G, Zhou C, He Y (2015) Understanding the structural-functional relationships. Neuroscientist 21:290–305PubMedCrossRefGoogle Scholar
  246. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934PubMedGoogle Scholar
  247. Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia. Front Hum Neurosci 8:653PubMedPubMedCentralCrossRefGoogle Scholar
  248. Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM (2010) BMP antagonists and FGF signaling contribute to different domains of the neural plate. Dev Biol 337:335–350PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wilson L, Chambers D (2015) Transcriptomic analysis of midbrain and individual rhombomeres in the chick embryo. Sci Data 1:140014Google Scholar
  250. Wobrock T, Gruber O, Schneider-Axmann T, Wölwer W, Gaebel W, Riesbeck M, Maier W, Klosterkötter J, Schneider F, Buchkremer G, Möller HJ, Schmitt A, Bender S, Schlösser R, Falkai P (2009) Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:278–283PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47PubMedCrossRefGoogle Scholar
  252. Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152PubMedCrossRefGoogle Scholar
  253. Yamada S, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, Anderson SA, Lo CW (2010) Developmental atlas of the early first trimester human embryo. Dev Dyn 239:1585–1595PubMedPubMedCentralCrossRefGoogle Scholar
  254. Yamazaki A, Yoshida M, Uematsu K (2002) Post-hatching development of the brain in Octopus ocellatus. Zool Sci 19:763–771PubMedCrossRefGoogle Scholar
  255. Yoon M (1971) Reorganization of retinotectal projection following surgical operations on the tectum in goldfish. Exp Neurol 33:395–411PubMedCrossRefGoogle Scholar
  256. Yoon MG (1973) Retention of the original topographic polarity by the 180° rotated tectal implant in young adult goldfish. J Physiol 233:575–588PubMedPubMedCentralCrossRefGoogle Scholar
  257. Yoshino J, Tochinai S (2004) Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis. Develop Growth Differ 46:523–534CrossRefGoogle Scholar
  258. Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Schlopp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536PubMedCrossRefGoogle Scholar
  259. Zalc B, Goujet D, Colman D (2008) The origin of the myelination program in vertebrates. Curr Biol 18:R511–R512PubMedCrossRefGoogle Scholar
  260. Zimmerman LB, de Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606PubMedCrossRefGoogle Scholar
  261. Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446PubMedGoogle Scholar
  262. Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration on the central nervous system of teleost fish. Brain Behav Evol 58:250–275PubMedCrossRefGoogle Scholar
  263. Zupanc GKH (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233PubMedGoogle Scholar
  264. Zupanc GK, Horschke I (1996) Tectal input to the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhyhchus: an in vitro tract-tracing study. Brain Res 739:201–209PubMedCrossRefGoogle Scholar
  265. Zupanc GKH, Sirbulescu RF (2011) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Eur J Neurosci 34:917–929PubMedCrossRefGoogle Scholar
  266. Zupanc GKH, Sirbulescu RF (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Brain Growth & Regeneration Laboratory, School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations