Advertisement

Stem Cells in the Developing and Adult Nervous System

  • Fumitaka OsakadaEmail author
  • Masayo Takahashi
Chapter
  • 799 Downloads

Abstract

The fertilized egg is a totipotent stem cell that can produce all cell types of the organism, including the embryonic and the extraembryonic tissues. As development proceeds, cells lose their capacity to proliferate and differentiate into different cell types, and gain specialization. However, advances in stem cell biology have provided new insights into development and regenerative medicine. For example, neural stem/progenitor cells have been found to exist not only during embryonic development, but also in the adult nervous system of mammals. Moreover, although development of an organism proceeds irreversibly from embryo to adult with cells differentiating progressively toward specialized cell types, somatic cells can be artificially reprogrammed to adopt a different cell fate, as exemplified by induced pluripotent stem cells (iPS cells) and induced neuronal cells (iN cells). Complex 3D tissue including the retina, cortex and adenohypophysis can be generated from pluripotent stem cells in vitro. Notably, autologous transplantation of an iPS cell-derived retinal pigment epithelium sheet was carried out for patients with aged macular degeneration in Japan in 2014. iPS cell technology is opening a new era in regenerative medicine and drug discovery. Here, we summarize the current views of stem cell biology during embryogenesis and adult neurogenesis, and then discuss therapeutic potential of stem cells, focusing on retinal development and regeneration.

Keywords

Nervous system Neuron Retina Embryonic stem cells Neural tube Induced pluripotent stem cells Induced neuronal cells Regeneration 

Notes

Acknowledgements

We thank Yoshiki Sasai (RIKEN), Akinori Akaike (Kyoto University), Edward M. Callaway (The Salk Institute for Biological Studies), and E. J. Chichilnisky (The Salk Institute for Biological Studies) for their continued support and challenging discussions, and members of the Takahashi laboratory, the Sasai laboratory, the Akaike laboratory, the Callaway laboratory, and the Chichilnisky laboratory for stimulating discussions. We are grateful for support from the Leading Project for Realization of Regenerative Medicine (M.T.), Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (F.O.), the Japan Science and Technology Agency (F.O.), the Kanae Foundation for the Promotion of Medical Science (F.O.), the Naito Foundation (F.O.), the Hokuto Foundation for Bioscience (F.O.), Takeda Science Foundation (F.O.), the Astellas Foundation for Research on Metabolic Disorders (F.O.), the Brain Science Program of National Institutes of Natural Sciences (F.O.), and the Pioneer Fund (F.O.). We apologize to those authors whose articles, although relevant to this subject, have not been cited in this review due to space limitations.

References

  1. Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521PubMedCrossRefGoogle Scholar
  2. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akagi T, Haruta M, Akita J, Nishida A, Honda Y, Takahashi M (2003) Different characteristics of rat retinal progenitor cells from different culture periods. Neurosci Lett 341:213–216PubMedCrossRefGoogle Scholar
  4. Altshuler D, Cepko C (1992) A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114:947–957PubMedGoogle Scholar
  5. Andreazzoli M, Gestri G, Angeloni D, Menna E, Barsacchi G (1999) Role of Xrx1 in Xenopus eye and anterior brain development. Development 126:2451–2460PubMedGoogle Scholar
  6. Aramant RB, Seiler MJ (2004) Progress in retinal sheet transplantation. Prog Retin Eye Res 23:475–494PubMedCrossRefGoogle Scholar
  7. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2:662–674CrossRefGoogle Scholar
  8. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739PubMedCrossRefGoogle Scholar
  9. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225PubMedPubMedCentralCrossRefGoogle Scholar
  11. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417PubMedCrossRefGoogle Scholar
  12. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227PubMedCrossRefGoogle Scholar
  13. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692PubMedGoogle Scholar
  14. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66PubMedCrossRefGoogle Scholar
  15. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cavodeassi F, Carreira-Barbosa F, Young RM, Concha ML, Allende ML, Houart C, Tada M, Wilson SW (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47:43–56PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030PubMedCrossRefGoogle Scholar
  18. Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163PubMedCrossRefGoogle Scholar
  19. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222PubMedGoogle Scholar
  20. Chuang JC, Mathers PH, Raymond PA (1999) Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84:195–198PubMedCrossRefGoogle Scholar
  21. Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006) Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302PubMedCrossRefGoogle Scholar
  22. Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS One 5:e12425PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  24. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716PubMedCrossRefGoogle Scholar
  25. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532PubMedCrossRefGoogle Scholar
  26. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56PubMedCrossRefGoogle Scholar
  27. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  28. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  29. Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252PubMedCrossRefGoogle Scholar
  30. Frankland PW, Kohler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497–503PubMedCrossRefGoogle Scholar
  31. Furukawa T, Kozak CA, Cepko CL (1997a) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94:3088–3093PubMedPubMedCentralCrossRefGoogle Scholar
  32. Furukawa T, Morrow EM, Cepko CL (1997b) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541PubMedCrossRefGoogle Scholar
  33. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN et al (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357PubMedCrossRefGoogle Scholar
  34. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566PubMedPubMedCentralCrossRefGoogle Scholar
  36. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871PubMedCrossRefGoogle Scholar
  37. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJ, Georgiadis A, Lakowski J et al (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31:741–747PubMedCrossRefGoogle Scholar
  38. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedCrossRefGoogle Scholar
  39. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morpholog 10:622–640Google Scholar
  40. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923PubMedCrossRefGoogle Scholar
  41. Hansen DV, Rubenstein JL, Kriegstein AR (2011) Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70:645–660PubMedPubMedCentralCrossRefGoogle Scholar
  42. Harada C, Guo X, Namekata K, Kimura A, Nakamura K, Tanaka K, Parada LF, Harada T (2011) Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun 2:189PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  44. Haruta M, Kosaka M, Kanegae Y, Saito I, Inoue T, Kageyama R, Nishida A, Honda Y, Takahashi M (2001) Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci 4:1163–1164PubMedCrossRefGoogle Scholar
  45. Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y et al (2004) In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci 45:1020–1025PubMedCrossRefGoogle Scholar
  46. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550PubMedCrossRefGoogle Scholar
  47. Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281PubMedCrossRefGoogle Scholar
  48. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295PubMedCrossRefGoogle Scholar
  49. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131PubMedCrossRefGoogle Scholar
  50. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735PubMedCrossRefGoogle Scholar
  52. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G et al (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 43:2573–2581PubMedCrossRefGoogle Scholar
  53. Hyatt GA, Schmitt EA, Fadool JM, Dowling JE (1996) Retinoic acid alters photoreceptor development in vivo. Proc Natl Acad Sci U S A 93:13298–13303PubMedPubMedCentralCrossRefGoogle Scholar
  54. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408PubMedCrossRefGoogle Scholar
  55. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N et al (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102:11331–11336PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6:e17084PubMedPubMedCentralCrossRefGoogle Scholar
  58. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A 105:19508–19513PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  60. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108:7838–7843PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675PubMedCrossRefGoogle Scholar
  63. Lagutin O, Zhu CC, Furuta Y, Rowitch DH, McMahon AP, Oliver G (2001) Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev Dyn 221:342–349PubMedCrossRefGoogle Scholar
  64. Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17:368–379PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27PubMedCrossRefGoogle Scholar
  66. Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718PubMedCrossRefGoogle Scholar
  67. Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell 4:73–79PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, Mastick GS, Brown NL (2005) Multiple requirements for Hes 1 during early eye formation. Dev Biol 284:464–478PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lepousez G, Nissant A, Lledo PM (2015) Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 86:387–401PubMedCrossRefGoogle Scholar
  71. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375PubMedCrossRefGoogle Scholar
  72. Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD et al (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8:688–694PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedCrossRefGoogle Scholar
  75. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedCrossRefGoogle Scholar
  76. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199PubMedCrossRefGoogle Scholar
  77. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660PubMedPubMedCentralCrossRefGoogle Scholar
  78. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207PubMedCrossRefGoogle Scholar
  79. Madsen TM, Kristjansen PE, Bolwig TG, Wortwein G (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119:635–642PubMedCrossRefGoogle Scholar
  80. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedCrossRefGoogle Scholar
  81. Masse K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062PubMedCrossRefGoogle Scholar
  82. Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–607PubMedCrossRefGoogle Scholar
  83. Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292PubMedPubMedCentralCrossRefGoogle Scholar
  84. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99Google Scholar
  85. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384PubMedCrossRefGoogle Scholar
  86. Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238PubMedCrossRefGoogle Scholar
  87. Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H et al (2003) Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci U S A 100:5828–5833PubMedPubMedCentralCrossRefGoogle Scholar
  88. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074PubMedCrossRefGoogle Scholar
  89. Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36PubMedGoogle Scholar
  90. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434PubMedCrossRefGoogle Scholar
  91. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785PubMedCrossRefGoogle Scholar
  92. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6:1255–1263PubMedCrossRefGoogle Scholar
  93. Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646PubMedCrossRefGoogle Scholar
  94. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  95. Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055PubMedGoogle Scholar
  96. Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 99:2020–2025PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101:13654–13659PubMedPubMedCentralCrossRefGoogle Scholar
  98. Osakada F (2011) Nuclear reprogramming to treat retinal degenerative diseases. Inflamm Regen 31:33–49CrossRefGoogle Scholar
  99. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8:1583–1601PubMedPubMedCentralCrossRefGoogle Scholar
  100. Osakada F, Takahashi M (2009) Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt pathway and transplantation therapy as strategies for retinal repair. J Pharmacol Sci 109:168–173PubMedCrossRefGoogle Scholar
  101. Osakada F, Takahashi M (2011) Neural induction and patterning in mammalian pluripotent stem cells. CNS Neurol Disord Drug Targets 10:419–432PubMedCrossRefGoogle Scholar
  102. Osakada F, Takahashi M (2015) Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 38:341–357PubMedCrossRefGoogle Scholar
  103. Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219PubMedCrossRefGoogle Scholar
  104. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224PubMedCrossRefGoogle Scholar
  105. Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4:811–824PubMedCrossRefGoogle Scholar
  106. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179PubMedCrossRefGoogle Scholar
  107. Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334PubMedCrossRefGoogle Scholar
  108. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872PubMedCrossRefGoogle Scholar
  111. Reh TA, Nagy T (1987) A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev Biol 122:471–482PubMedCrossRefGoogle Scholar
  112. Reh TA, Nagy T, Gretton H (1987) Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330:68–71PubMedCrossRefGoogle Scholar
  113. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522PubMedCrossRefGoogle Scholar
  114. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedCrossRefGoogle Scholar
  115. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574PubMedGoogle Scholar
  116. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744PubMedCrossRefGoogle Scholar
  117. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336PubMedCrossRefGoogle Scholar
  119. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedCrossRefGoogle Scholar
  120. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376PubMedCrossRefGoogle Scholar
  121. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sun G (2006) Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289:243–252PubMedCrossRefGoogle Scholar
  123. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526PubMedCrossRefGoogle Scholar
  124. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558PubMedCrossRefGoogle Scholar
  125. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  126. Takahashi M, Palmer TD, Takahashi J, Gage FH (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12:340–348PubMedCrossRefGoogle Scholar
  127. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  128. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRefGoogle Scholar
  129. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  130. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374PubMedCrossRefGoogle Scholar
  132. Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina. Biochem Biophys Res Commun 363:347–354PubMedCrossRefGoogle Scholar
  133. Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249PubMedCrossRefGoogle Scholar
  134. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296PubMedCrossRefGoogle Scholar
  135. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86:5434–5438PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  137. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397PubMedCrossRefGoogle Scholar
  138. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284PubMedCrossRefGoogle Scholar
  139. Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52PubMedCrossRefGoogle Scholar
  140. Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41:867–879PubMedCrossRefGoogle Scholar
  141. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  142. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660Google Scholar
  144. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS, Zambidis ET, Meyer JS et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047PubMedPubMedCentralGoogle Scholar
  145. Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–5167PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical SciencesNagoya UniversityNagoyaJapan
  2. 2.Laboratory of Neural Information Processing, Institute for Advanced ResearchNagoya UniversityChikusa-ku, NagoyaJapan
  3. 3.Systems Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaUSA
  4. 4.PRESTO, Japan Science and Technology AgencySaitamaJapan
  5. 5.Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKENKobeJapan

Personalised recommendations