Stem Cells and Asymmetric Cell Division

  • Rita Sousa-NunesEmail author
  • Frank HirthEmail author


Asymmetric stem cell division is a widespread process used to generate cellular diversity in developing and adult organisms whilst retaining a steady stem cell pool. When dividing asymmetrically, stem cells self-renew and generate a second cell type, which can be either a differentiating progenitor or a postmitotic cell. Studies in model organisms, most notably the nematode worm Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the mouse Mus musculus, have identified interrelated mechanisms that regulate asymmetric cell division, from polarity formation and mitotic spindle orientation, to asymmetric segregation of fate determinants and organelles, that impact growth and proliferation. Mechanisms linking extrinsic signals to cellular asymmetry are also beginning to emerge. These cellular processes are mediated by evolutionary conserved molecules, and together equilibrate numbers of progenitor and differentiated cells. Insights into asymmetric division have enhanced our understanding of stem cell biology and of hypo- or hyper-proliferation as a consequence of its disruption, including cancer formation. These insights are of major interest for regenerative medicine, since asymmetrically dividing stem cells provide a powerful source for targeted cell replacement and tissue regeneration.


Stem cell Progenitor cell Neural stem cell Neuroblast Cell polarity Apicobasal polarity Asymmetric cell division Self-renewal Differentiation Cell fate determinant Growth Proliferation Mitotic spindle orientation Centrosome Primary cilium Midbody Drosophila C. elegans Mouse Cell replacement Tissue regeneration Cancer 

List of Abbreviations


Argonaute protein 1






Brain tumor


Cell division cycle 42

C. elegans

Caenorhabditis elegans




Central Nervous System


cellular Myelocytomatosis oncogene


atypical Protein Kinase C


Discs large


epiblast stem cells


embryonic stem (cell)


Epithelial cell transforming gene 2




G-protein alpha, subunit i


G-protein beta at 13 F (cytological location in Drosophila genome)


G-protein gamma 1


GTPase activating protein


Guanine dissociation inhibitor


Guanosine diphosphate


Guanosine diphosphatase


Guanine exchange factor


ganglion mother cell




Guanosine triphosphatase




intermediate neural precursor




induced pluripotent stem (cells)




Kinesin heavy chain 73


Kinesin Family Member 13B


Kinesin-Like Protein 23


Lethal (2) giant larvae


Leucine-Glycine-Asparagine repeats-containing protein (also known as G-protein-signaling modulator 2, GPSM2)




messenger Ribonucleic Acid


Microtubule star


Mushroom body defect


NCL-1, HT2A, and LIN-41 (protein domain)




Nuclear distribution E


Nuclear Mitotic Apparatus


Partitioning defective


Partitioning defective 3


Partitioning defective 6




pericentriolar material


planar cell polarity


Post synaptic density 95, Discs large, and Zonula occludens-1 domain


Partner of Inscuteable


Partner of Numb


Protein Phosphatase 2A




Prospero homeobox protein 1


Ribonucleic Acid


sensory organ precursor (of Drosophila)


Spaghetti squash


Tripartite motif protein 3


Tripartite motif protein 32





Given the vast amount of literature on the topic, we favoured citation of a variety of review articles when referring to general concepts, and reserved primary citations for when that was not possible or when referring to specific molecular mechanisms. Work in the Sousa-Nunes laboratory is supported by a Cancer Research UK Career Development Fellowship; work in the Hirth laboratory is supported by grants from the UK Medical Research Council (G070149; MR/L010666/1), the Royal Society (Hirth/2007/R2), the Motor Neurone Disease Association (Hirth/Mar12/6085), and Alzheimer’s Research UK (Hirth/ARUK/2012).


  1. Aceto D, Beers M, Kemphues KJ (2006) Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Dev Biol 299:386–397PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ader M, Tanaka EM (2014) Modeling human development in 3D culture. Curr Opin Cell Biol 31:23–28PubMedCrossRefGoogle Scholar
  3. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4465PubMedPubMedCentralCrossRefGoogle Scholar
  4. Albertson R, Doe CQ (2003) Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 5:166–170PubMedCrossRefGoogle Scholar
  5. Alexandre P, Clarke J, Kosodo Y (2014) Asymmetric cell divisions and nuclear migration of neural progenitors: two mechanisms that influence neurogenesis. In: Calegari F, Waskow C (eds) Stem cells: from basic research to therapy, vol 1. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–52Google Scholar
  6. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282PubMedCrossRefGoogle Scholar
  7. Arama E, Dickman D, Kinchie Z, Shearn A, Lev Z (2000) Mutations in the beta-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 19:3706–3716PubMedCrossRefGoogle Scholar
  8. Archambault V, D’Avino PP, Deery MJ, Lilley KS, Glover DM (2008) Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 22:2707–2720PubMedPubMedCentralCrossRefGoogle Scholar
  9. Atwood SX, Prehoda KE (2009) aPKC phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19:723–729PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414:638–643PubMedCrossRefGoogle Scholar
  11. Bähler J (2005) Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39:69–94PubMedCrossRefGoogle Scholar
  12. Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O’Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AIM (2008) Beta-catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 22:91–105PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barros CS, Phelps CB, Brand AH (2003) Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cotical exclusion rather than active transport. Dev Cell 5:829–840PubMedCrossRefGoogle Scholar
  14. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386PubMedCrossRefGoogle Scholar
  15. Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bazzi H, Anderson KV (2014) Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 111:E1491–E1500PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beaucher M, Goodliffe J, Hersperger E, Trunova S, Frydman H, Shearn A (2007) Drosophila brain tumor metastases express both neuronal and glial cell type markers. Dev Biol 301:287–297PubMedPubMedCentralCrossRefGoogle Scholar
  18. Begasse ML, Hyman AA (2011) The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. In: Kubiak JZ (ed) Cell cycle in development, Results and problems in cell differentiation, 53. Springer, Berlin/Heidelberg/New York, pp 109–133CrossRefGoogle Scholar
  19. Bello BC, Reichert H, Hirth F (2006) The brain tumour gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133:2639–2648PubMedCrossRefGoogle Scholar
  20. Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12:640–647PubMedCrossRefGoogle Scholar
  21. Bergstralh DT, Haack T, St Johnston D (2013) Epithelial polarity and spindle orientation: intersecting pathways. Philos Trans R Soc Lond B Biol Sci 368:20130291PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bernander R (2000) Chromosome replication, nucleoid segregation and cell division in archaea. Trends Microbiol 8:278–283PubMedCrossRefGoogle Scholar
  23. Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422:326–330PubMedCrossRefGoogle Scholar
  24. Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumour suppressor Brat regulates self-renewal in drosophila neural stem cells. Cell 124:1241–1253PubMedCrossRefGoogle Scholar
  25. Bi E, Park HO (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191:347–387PubMedPubMedCentralCrossRefGoogle Scholar
  26. Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F (2009) Loss of heterozygosity of TRIM3 in malignant gliomas. BMC Cancer 9:71PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bowman SK, Neumüller RA, Novatchkova M, Du Q, Knoblich JA (2006) The Drosophila NuMa homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 10:731–742PubMedCrossRefGoogle Scholar
  28. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546PubMedPubMedCentralCrossRefGoogle Scholar
  29. Broadus J, Doe CQ (1997) Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr Biol 7:827–835PubMedCrossRefGoogle Scholar
  30. Broadus J, Fuerstenberg S, Doe CQ (1998) Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391:792–795PubMedCrossRefGoogle Scholar
  31. Bufalino MR, DeVeale B, van der Kooy D (2013) The asymmetric segregation of damaged proteins is stem cell-type dependent. J Cell Biol 201:523–530PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467:91–94PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cahan P, Daley GQ (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 14:357–368PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cai Y, Yu F, Lin S, Chia W, Yang X (2003) Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112:51–62PubMedCrossRefGoogle Scholar
  35. Campos-Sánchez E, Cobaleda C (2015) Tumoral reprogramming: plasticity takes a walk on the wild side. Biochim Biophys Acta 1849:436–447PubMedCrossRefGoogle Scholar
  36. Casadesús J, Low DA (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935PubMedPubMedCentralCrossRefGoogle Scholar
  37. Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18:1209–1214PubMedCrossRefGoogle Scholar
  38. Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129PubMedCrossRefGoogle Scholar
  39. Caussinus E, Hirth F (2007) Asymmetric stem cell division in development and cancer. Prog Mol Subcell Biol 45:205–225PubMedCrossRefGoogle Scholar
  40. Cheeks RJ, Canman JC, Gabriel WN, Meyer N, Strome S, Goldstein B (2004) C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 14:851–862PubMedCrossRefGoogle Scholar
  41. Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chen CT, Ettinger AW, Huttner WB, Doxsey SJ (2013a) Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol 23:118–128PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chen S, Lewallen M, Xie T (2013b) Adhesion in the stem cell niche: biological roles and regulation. Development 140:255–265PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chen G, Kong J, Tucker-Burden C, Anand M, Rong Y, Rahman F, Moreno CS, Van Meir EG, Hadjipanayis CG, Brat DJ (2014) Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res 74:4536–4548PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cheng J, Türkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chilov D, Sinjushina N, Rita H, Taketo MM, Mäkelä TP, Partanen J (2011) Phosphorylated β-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol 357:259–268PubMedCrossRefGoogle Scholar
  47. Choksi SP, Southall TD, Bossing T, Edoff K, De Wit E, Fischer BE, Van Steensel B, Miclem G, Brand AH (2006) Prospero acts as a binary switch between self renewal and differentiation in Drosophila neural stem cells. Dev Cell 11:775–789PubMedCrossRefGoogle Scholar
  48. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095PubMedCrossRefGoogle Scholar
  49. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H, Lendahl U, Frisén J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663PubMedCrossRefGoogle Scholar
  50. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012PubMedCrossRefGoogle Scholar
  51. Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20:2187–2292PubMedCrossRefGoogle Scholar
  52. Connell M, Cabernard C, Ricketson D, Doe CQ, Prehoda KE (2011) Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol Biol Cell 22:4220–4226PubMedPubMedCentralCrossRefGoogle Scholar
  53. Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431:92–96PubMedCrossRefGoogle Scholar
  54. Cowan CR, Hyman AA (2006) Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nat Cell Biol 8:1441–1447PubMedCrossRefGoogle Scholar
  55. Cross FR, Buchler NE, Skotheim JM (2011) Evolution of networks and sequences in eukaryotic cell cycle control. Philos Trans R Soc Lond B Biol Sci 366:3532–3544PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dammermann A, Cipak L, Gregan J (2012) Microtubule organization: a pericentriolar material-like structure in yeast meiosis. Curr Biol 22:R229–R231PubMedCrossRefGoogle Scholar
  57. Dettmer J, Friml J (2011) Cell polarity in plants: when two do the same, it is not the same. Curr Opin Cell Biol 23:686–696PubMedCrossRefGoogle Scholar
  58. Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555–564PubMedPubMedCentralCrossRefGoogle Scholar
  59. Doe CQ, Chu-LaGraff Q, Wright DM, Scott MP (1991) The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65:451–464PubMedCrossRefGoogle Scholar
  60. Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516PubMedCrossRefGoogle Scholar
  61. Du Q, Stukenberg PT, Macara IG (2001) A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3:1069–1075PubMedCrossRefGoogle Scholar
  62. Edgar BA, Lehner CF (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274:1646–1652PubMedCrossRefGoogle Scholar
  63. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766PubMedPubMedCentralCrossRefGoogle Scholar
  64. Erben V, Waldhuber M, Langer D, Fetka I, Jansen RP, Petritsch C (2008) Asymmetric localisation of the adaptor protein Miranda in neuroblasts is achievd by the diffusion and sequential interaction of myosin II and VI. J Cell Sci 121:1403–1414PubMedCrossRefGoogle Scholar
  65. Ettinger AW, Wilsch-Bräuninger M, Marzesco AM, Bickle M, Lohmann A, Maliga Z, Karbanová J, Corbeil D, Hyman AA, Huttner WB (2011) Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2:503PubMedPubMedCentralCrossRefGoogle Scholar
  66. Farkas LM, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715PubMedCrossRefGoogle Scholar
  67. Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329PubMedCrossRefGoogle Scholar
  68. Frank DJ, Edgar BA, Roth MB (2002) The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development 129:399–407PubMedGoogle Scholar
  69. Fuerstenberg S, Peng CY, Alvarez-Ortiz P, Hor T, Doe CQ (1998) Identification of Miranda protein domains regulating asymmetric cortical localisation, cargo binding, and cortical release. Mol Cell Neurosci 12:325–339PubMedCrossRefGoogle Scholar
  70. Fujimoto K, Sawai S (2013) A design principle of group-level decision making in cell populations. PLoS Comput Biol 9:e1003110PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fumoto K, Kadono M, Izumi N, Kikuchi A (2009) Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO Rep 10:606–613PubMedPubMedCentralCrossRefGoogle Scholar
  72. Furman DP, Bukharina TA (2011) Drosophila mechanoreceptors as a model for studying asymmetric cell division. Int J Dev Biol 55:133–141PubMedCrossRefGoogle Scholar
  73. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18:657–665PubMedCrossRefGoogle Scholar
  74. Fuse N, Hisata K, Katzen AL, Matsuzaki F (2003) Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr Biol 13:947–954PubMedCrossRefGoogle Scholar
  75. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gateff E (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200:1448–1459PubMedCrossRefGoogle Scholar
  77. Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156:437–451. doi: 10.1083/jcb.200108135 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344PubMedPubMedCentralCrossRefGoogle Scholar
  79. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13:609–622PubMedPubMedCentralCrossRefGoogle Scholar
  80. Goldstein B, Takeshita H, Mizumoto K, Sawa H (2006) Wnt signals can function as positional cues in establishing cell polarity. Dev Cell 10:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gómez-López S, Lerner RG, Petritsch C (2014) Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 71:575–597PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gönczy P (2008) Mechansims of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366PubMedCrossRefGoogle Scholar
  83. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedCrossRefGoogle Scholar
  84. Gurudev N, Yuan M, Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3:332–341. doi: 10.1242/bio.20147310 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Habib SJ, Chen B-C, Tsai F-C, Anastassiadis K, Meyer T, Betzig R, Nusse R (2013) A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339:1445–1448PubMedPubMedCentralCrossRefGoogle Scholar
  86. Halley JD, Smith-Miles K, Winkler DA, Kalkan T, Huang S, Smith A (2012) Self-organizing circuitry and emergent computation in mouse embryonic stem cells. Stem Cell Res 8:324–333PubMedCrossRefGoogle Scholar
  87. Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A (1998) Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125:4521–4530PubMedGoogle Scholar
  88. Hao Y, Boyd L, Seydoux G (2006) Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 10:199–208PubMedPubMedCentralCrossRefGoogle Scholar
  89. Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–356PubMedCrossRefGoogle Scholar
  90. Hardwick LJ, Philpott A (2014) Nervous decision-making: to divide or differentiate. Trends Genet 30:254–261PubMedPubMedCentralCrossRefGoogle Scholar
  91. Harris H (2005) A long view of fashions in cancer research. Bioessays 27:833–838PubMedCrossRefGoogle Scholar
  92. Hietakangas V, Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410PubMedCrossRefGoogle Scholar
  93. Hill DP, Strome S (1990) Brief cytochalasin-induced disruption of microfilaments during a critical interval in 1-cell C. elegans embryos alters the partitioning of developmental instructions to the 2-cell embryo. Development 108:159–172PubMedGoogle Scholar
  94. Hindley C, Philpott A (2013) The cell cycle and pluripotency. Biochem J 451:135–143PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377:627–630PubMedCrossRefGoogle Scholar
  96. Hird SN, White JG (1993) Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J Cell Biol 121:1343–1355PubMedCrossRefGoogle Scholar
  97. Homem CCF, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell biology. Development 139:4297–4310PubMedCrossRefGoogle Scholar
  98. Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414:634–638PubMedCrossRefGoogle Scholar
  99. Hong N, Li Z, Hong Y (2011) Fish stem cell cultures. Int J Biol Sci 7:392–402PubMedPubMedCentralCrossRefGoogle Scholar
  100. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87PubMedCrossRefGoogle Scholar
  101. Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9:846–859PubMedCrossRefGoogle Scholar
  102. Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–629PubMedCrossRefGoogle Scholar
  103. Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) iPS cells: a game changer for future medicine. EMBO J 33:409–417PubMedPubMedCentralCrossRefGoogle Scholar
  104. Insolera R, Bazzi H, Shao W, Anderson KV, Shi SH (2014) Cortical neurogenesis in the absence of centrioles. Nat Neurosci 17:1528–1535PubMedPubMedCentralCrossRefGoogle Scholar
  105. Izumi Y, Ohta N, Itoh-Furuya A, Fuse N, Matsuzaki F (2004) Differential functions of G protein and Baz-aPKC signalling pathways in Drosophila neuroblast asymmetric division. J Cell Biol 164:729–738PubMedPubMedCentralCrossRefGoogle Scholar
  106. Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8:586–593PubMedCrossRefGoogle Scholar
  107. Januschke J, Näthke I (2014) Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol 34:116–123PubMedPubMedCentralCrossRefGoogle Scholar
  108. Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243PubMedPubMedCentralCrossRefGoogle Scholar
  109. Jenkins N, Saam JR, Mango SE (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313:1298–1301PubMedCrossRefGoogle Scholar
  110. Jewell JL, Guan KL (2013) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38:233–242PubMedPubMedCentralCrossRefGoogle Scholar
  111. Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812PubMedCrossRefGoogle Scholar
  112. Johnston CA, Hirono K, Prehoda KE, Doe CQ (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138:1150–1163PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kaltschmidt JA, Davidson C, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2:7–10PubMedCrossRefGoogle Scholar
  114. Kaplan DD, Meigs TE, Kelly P, Casey PJ (2004) Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 279:10829–10832PubMedCrossRefGoogle Scholar
  115. Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, Zoncu R, Chen W, Weinberg RA, Sabatini DM (2015) Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kemper K, de Goeje PL, Peeper DS, van Amerongen R (2014) Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res 74:5937–5941PubMedCrossRefGoogle Scholar
  117. Kieser KJ, Rubin EJ (2014) How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12:550–562PubMedCrossRefGoogle Scholar
  118. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. Cell Adh Migr 87:2183–2200Google Scholar
  119. Kim DW, Hirth F (2009) Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila. Cell Adh Migr 3:1–10CrossRefGoogle Scholar
  120. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in lgl1 knockout mice. Genes Dev 18:559–571PubMedPubMedCentralCrossRefGoogle Scholar
  121. Knoblich JA (2010) Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11:849–860PubMedPubMedCentralCrossRefGoogle Scholar
  122. Knoblich JA, Jan LY, Jan YN (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377:624–627PubMedCrossRefGoogle Scholar
  123. Knoblich JA, Jan LY, Jan YN (1997) The N-terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc Natl Acad Sci U S A 94:13005–13010PubMedPubMedCentralCrossRefGoogle Scholar
  124. Knoblich JA, Jan LY, Jan YN (1999) Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. Curr Biol 9:155–158PubMedCrossRefGoogle Scholar
  125. Kotak S, Busso C, Gönczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97–110PubMedPubMedCentralCrossRefGoogle Scholar
  126. Krahn MP, Egger-Adam D, Wodarz A (2009) PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts. Dev Cell 16:901–908PubMedCrossRefGoogle Scholar
  127. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377PubMedCrossRefGoogle Scholar
  128. Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of Inscuteable in orienting asymmetric cell division in Drosophila. Nature 383:50–55PubMedCrossRefGoogle Scholar
  129. Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol 8:1357–1365PubMedCrossRefGoogle Scholar
  130. Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686PubMedCrossRefGoogle Scholar
  132. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125PubMedCrossRefGoogle Scholar
  133. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32:795–803PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lee CY, Robinson KJ, Doe CQ (2006a) Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439:594–598PubMedCrossRefGoogle Scholar
  136. Lee CY, Andersen RO, Cabernard C, Manning L, Tran KD, Lanskey MJ, Bashirullah A, Doe CQ (2006b) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20:3464–3474PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ (2006c) Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self renewal. Dev Cell 10:441–449PubMedCrossRefGoogle Scholar
  138. Leuzinger S, Hirth F, Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, Reichert H (1998) Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development 125:1703–1710PubMedGoogle Scholar
  139. Li R (2013) The art of choreographing asymmetric cell division. Dev Cell 25:439–450PubMedCrossRefGoogle Scholar
  140. Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873PubMedCrossRefGoogle Scholar
  141. Li L, Vaessin H (2000) Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 14:147–151PubMedPubMedCentralGoogle Scholar
  142. Li P, Yang X, Wasser M, Cai Y, Chia W (1997) Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90:437–447PubMedCrossRefGoogle Scholar
  143. Li HS, Wang D, Shen Q, Schonemann MD, Gorski JA, Jones KR, Temple S, Jan LY, Jan YN (2003) Inactivation of numb and numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40:1105–1118PubMedCrossRefGoogle Scholar
  144. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P (2008) Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 31:146–153PubMedCrossRefGoogle Scholar
  145. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096PubMedCrossRefGoogle Scholar
  146. Liu TH, Li L, Vaessin H (2002) Transcription of the Drosophila CKI gene decapo is regulated by a modular array of cis-regulatory sequences. Mech Dev 112:25–36PubMedCrossRefGoogle Scholar
  147. Liu W, Jeganathan G, Amiri S, Morgan KM, Ryan BM, Pine SR (2013) Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines. Mol Cancer 12:139PubMedPubMedCentralCrossRefGoogle Scholar
  148. Loh KM, Lim B, Ang LT (2015) Ex uno plures: molecular designs for embryonic pluripotency. Physiol Rev 95:245–295PubMedCrossRefGoogle Scholar
  149. Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H, Hirth F (2004) Transcriptional signature of an adult brain tumour in Drosophila. BMC Genomics 5:24PubMedPubMedCentralCrossRefGoogle Scholar
  150. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117:1117–1128PubMedPubMedCentralCrossRefGoogle Scholar
  151. Lu MS, Prehoda KE (2013) A NudE/14-3-3 pathway coordinates dynein and the kinesin Khc73 to position the mitotic spindle. Dev Cell 26:369–380PubMedPubMedCentralCrossRefGoogle Scholar
  152. Lu B, Rothenberg M, Jan LY, Jan YN (1998) Partner of Numb co-localises with Numb during mitosis and directs Numb asymmetric localisation in Drosophila neural and muscle progenitors. Cell 95:225–235PubMedCrossRefGoogle Scholar
  153. Lu B, Ackerman L, Jan LY, Jan YN (1999) Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol Cell 4:883–891PubMedCrossRefGoogle Scholar
  154. Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409:522–525PubMedCrossRefGoogle Scholar
  155. Mack NA, Georgiou M (2014) The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases 5:10PubMedCrossRefGoogle Scholar
  156. Mahankali M, Henkels KM, Speranza F, Gomez-Cambronero J (2015) A non-mitotic role for Aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. J Cell Sci 128:516–526PubMedPubMedCentralCrossRefGoogle Scholar
  157. Marignani PA (2005) LKB1, the multitasking tumour suppressor kinase. J Clin Pathol 58:15–19PubMedPubMedCentralCrossRefGoogle Scholar
  158. Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675PubMedCrossRefGoogle Scholar
  159. Marthiens V, ffrench-Constant C (2009) Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep 10:515–520PubMedPubMedCentralCrossRefGoogle Scholar
  160. Matsuzaki F, Koizumi K, Hama C, Yoshioka T, Nabeshima Y (1992) Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem Biophys Res Commun 182:1326–1332PubMedCrossRefGoogle Scholar
  161. Matsuzaki F, Ohshiro T, Ikeshima-Kataoka H, Izumi H (1998) Miranda localises staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development 125:4089–4098PubMedGoogle Scholar
  162. Mayer M, Depken M, Bois JS, Jülicher F, Grill SW (2010) Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467:617–621PubMedCrossRefGoogle Scholar
  163. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  164. Mennella V, Agard DA, Huang B, Pelletier L (2014) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24:188–197PubMedPubMedCentralCrossRefGoogle Scholar
  165. Miller JP, Yeh N, Vidal A, Koff A (2007) Interweaving the cell cycle machinery with cell differentiation. Cell Cycle 6(23):2932–2938PubMedCrossRefGoogle Scholar
  166. Morgani SM, Brickman JM (2014) The molecular underpinnings of totipotency. Philos Trans R Soc B 369. pii: 20130549Google Scholar
  167. Mori D, Yamada M, Mimori-Kiyosue Y, Shirai Y, Suzuki A, Ohno S, Saya H, Wynshaw-Boris A, Hirotsune S (2009) An essential role of the aPKC- Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 11:1057–1068PubMedCrossRefGoogle Scholar
  168. Motegi F, Sugimoto A (2006) Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat Cell Biol 8:978–985PubMedCrossRefGoogle Scholar
  169. Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7:413–424PubMedCrossRefGoogle Scholar
  170. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680PubMedCrossRefGoogle Scholar
  171. Nagao T, Leuzinger S, Acampora D, Simeone A, Finkelstein R, Reichert H, Furukubo-Tokunaga K (1998) Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proc Natl Acad Sci U S A 95:3737–3742PubMedPubMedCentralCrossRefGoogle Scholar
  172. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedPubMedCentralCrossRefGoogle Scholar
  173. Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699PubMedPubMedCentralCrossRefGoogle Scholar
  174. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4:a008128PubMedPubMedCentralCrossRefGoogle Scholar
  175. Nipper RW, Siller KH, Smith NR, Doe CQ, Prehoda KE (2007) Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci U S A 104:14306–14311PubMedPubMedCentralCrossRefGoogle Scholar
  176. Ochocki JD, Simon MC (2013) Nutrient-sensing pathways and metabolic regulation in stem cells. J Cell Biol 203:23–33PubMedPubMedCentralCrossRefGoogle Scholar
  177. Ogawa H, Ohta N, Moon W, Matsuzaki F (2009) Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 122:3242–3249PubMedCrossRefGoogle Scholar
  178. Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408:596–600CrossRefGoogle Scholar
  179. Onder TT, Daley GQ (2012) New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22:500–508PubMedPubMedCentralCrossRefGoogle Scholar
  180. Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc B 363:153–170CrossRefGoogle Scholar
  181. Ouyang Y, Petritsch C, Wen H, Jan L et al (2011a) Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 138:2185–2196PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ouyang Y, Song Y, Lu B (2011b) dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E. PLoS ONE 6:e28098PubMedPubMedCentralCrossRefGoogle Scholar
  183. Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae S-S, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong WH, Chin L, Ligon KL, DePinho RA (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5:540–553PubMedPubMedCentralCrossRefGoogle Scholar
  184. Paranjpe SS, Veenstra GJC (2015) Establishing pluripotency in early development. Biochim Biophys Acta 1849:626–636PubMedCrossRefGoogle Scholar
  185. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902PubMedCrossRefGoogle Scholar
  186. Paridaen JT, Wilsch-Bräuninger M, Huttner WB (2013) Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155:333–344PubMedCrossRefGoogle Scholar
  187. Pelletier L, Yamashita YM (2012) Centrosome asymmetry and inheritance during animal development. Curr Opin Cell Biol 24:541–546PubMedPubMedCentralCrossRefGoogle Scholar
  188. Peng CY, Manning L, Albertson R, Doe CQ (2000) The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408:596–600PubMedCrossRefGoogle Scholar
  189. Pereira G, Yamashita YM (2011) Fly meets yeast: checking the correct orientation of cell division. Trends Cell Biol 21:526–533PubMedPubMedCentralCrossRefGoogle Scholar
  190. Petersen PH, Zhou K, Hwang JK, Jan YN, Zhong W (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419:929–934PubMedCrossRefGoogle Scholar
  191. Petersen PH, Zhou K, Krauss S, Zhong W (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 7:803–811PubMedCrossRefGoogle Scholar
  192. Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci U S A 101:6536–6541PubMedPubMedCentralCrossRefGoogle Scholar
  193. Petritsch C, Tavosanis G, Turck CW, Jan LY, Jan YN (2003) The Drosophila myosin VI jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4:273–281PubMedCrossRefGoogle Scholar
  194. Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblast in Drosophila. Nat Cell Biol 3:43–49PubMedCrossRefGoogle Scholar
  195. Pieters T, van Roy F (2014) Role of cell-cell adhesion complexes in embryonic stem cell biology. J Cell Sci 127:2603–2613PubMedCrossRefGoogle Scholar
  196. Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11:65–70PubMedCrossRefGoogle Scholar
  197. Postiglione MP, Jüschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-Basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72:269–284PubMedPubMedCentralCrossRefGoogle Scholar
  198. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129:1351–1363PubMedPubMedCentralCrossRefGoogle Scholar
  199. Rasmussen CG, Humphries JA, Smith LG (2011) Determination of symmetric and asymmetric division planes in plant cells. Annu Rev Plant Biol 62:387–409PubMedCrossRefGoogle Scholar
  200. Renault VM, Rafalski VA, Morgan AA, Salih DAM, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539PubMedPubMedCentralCrossRefGoogle Scholar
  201. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  202. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151PubMedPubMedCentralCrossRefGoogle Scholar
  203. Rolls MM, Albertson R, Shih HP, Lee CY, Doe CQ (2003) Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163:1089–1098PubMedPubMedCentralCrossRefGoogle Scholar
  204. Roubinet C, Cabernard C (2014) Control of asymmetric cell division. Curr Opin Cell Biol 31:84–91PubMedCrossRefGoogle Scholar
  205. Salzmann V, Chen C, Chiang CY, Tiyaboonchai A, Mayer M, Yamashita YM (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 25:267–275PubMedPubMedCentralCrossRefGoogle Scholar
  206. Sánchez I, Dynlacht BD (2005) New insights into cyclins, CDKs, and cell cycle control. Semin Cell Dev Biol 16:311–321PubMedCrossRefGoogle Scholar
  207. Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G (2008) Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol 8:225PubMedPubMedCentralCrossRefGoogle Scholar
  208. Sasai N, Briscoe J (2012) Primary cilia and graded Sonic Hedgehog signaling. Wiley Interdiscip Rev Dev Biol 1:753–772PubMedCrossRefGoogle Scholar
  209. Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123:499–503PubMedPubMedCentralCrossRefGoogle Scholar
  210. Scadden DT (2014) Nice neighborhood: emerging concepts of the stem cell niche. Cell 157:41–50PubMedPubMedCentralCrossRefGoogle Scholar
  211. Schatton T, Frank NY, Frank MH (2009) Identification and targeting of cancer stem cells. BioEssays 31:1038–1049PubMedPubMedCentralCrossRefGoogle Scholar
  212. Schiel JA, Childs C, Prekeris R (2013) Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 23:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  213. Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402:548–551PubMedCrossRefGoogle Scholar
  214. Schonegg S, Hyman AA (2006) CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133:3507–3516PubMedCrossRefGoogle Scholar
  215. Schuldt AJ, Adams JH, Davidson CM, Micklem DR, Haseloff J, St Johnston D, Brand AH (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12:1847–1857PubMedPubMedCentralCrossRefGoogle Scholar
  216. Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136:913–925PubMedPubMedCentralCrossRefGoogle Scholar
  217. Severson AF, Bowerman B (2003) Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J Cell Biol 161:21–26PubMedPubMedCentralCrossRefGoogle Scholar
  218. Shen CP, Jan LY, Jan YN (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90:449–458PubMedCrossRefGoogle Scholar
  219. Shen CP, Knoblich JA, Chan YM, Jiang MM, Jan LY, Jan YN (1998) Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev 12:1837–1846PubMedPubMedCentralCrossRefGoogle Scholar
  220. Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ (2015) Bending gradients: how the intestinal stem cell gets its home. Cell 161:569–580PubMedPubMedCentralCrossRefGoogle Scholar
  221. Siegrist SE, Doe CQ (2007) Microtubule-induced cortical cell polarity. Genes Dev 21:483–496PubMedCrossRefGoogle Scholar
  222. Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374PubMedCrossRefGoogle Scholar
  223. Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8:594–600PubMedCrossRefGoogle Scholar
  224. Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498–1501PubMedCrossRefGoogle Scholar
  225. Smith A (2006) A glossary for stem cell biology. Nature 441:1060CrossRefGoogle Scholar
  226. Smith CA, Lau KM, Rahmani Z, Dho SE, Brothers G, She YM, Berry DM, Bonneil E, Thibault P, Schweisguth F, Le Borgne R, McGlade CJ (2007) aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 26:468–480PubMedPubMedCentralCrossRefGoogle Scholar
  227. Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 7:319–327PubMedCrossRefGoogle Scholar
  228. Song X, Zhu CH, Doan C, Xie T (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296:1855–1857PubMedCrossRefGoogle Scholar
  229. Sonoda J, Wharton RP (2001) Drosophila Brain Tumour is a translational repressor. Genes Dev 15:762–773PubMedPubMedCentralCrossRefGoogle Scholar
  230. Sousa-Nunes R, Somers WG (2010) Phosphorylation and dephosphorylation events allow for rapid segregation of fate determinants during Drosophila neuroblast asymmetric divisions. Commun Integr Biol 3:46–49PubMedPubMedCentralCrossRefGoogle Scholar
  231. Sousa-Nunes R, Somers WG (2013) Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv Exp Med Biol 786:79–102PubMedCrossRefGoogle Scholar
  232. Sousa-Nunes R, Chia W, Somers WG (2009) Protein phosphatase 4 mediates localization of the Miranda complex during Drosophila neuroblast asymmetric divisions. Genes Dev 23:359–372PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sousa-Nunes R, Cheng LY, Gould AP (2010) Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol 20:50–57PubMedCrossRefGoogle Scholar
  234. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512PubMedPubMedCentralCrossRefGoogle Scholar
  235. Spana EP, Doe CQ (1995) The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121:3187–3195PubMedGoogle Scholar
  236. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263PubMedPubMedCentralCrossRefGoogle Scholar
  237. Steere N, Chae V, Burke M, Li FQ, Takemaru K, Kuriyama R (2012) A Wnt/beta-catenin pathway antagonist Chibby binds Cenexin at the distal end of mother centrioles and functions in primary cilia formation. PLoS ONE 7:e41077PubMedPubMedCentralCrossRefGoogle Scholar
  238. Stergiopoulos A, Elkouris M, Politis PK (2015) Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification. Front Cell Neurosci 8:454PubMedPubMedCentralCrossRefGoogle Scholar
  239. Sterneckert JL, Reinhardt P, Schöler HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15:625–639PubMedCrossRefGoogle Scholar
  240. Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846PubMedCrossRefGoogle Scholar
  241. Sun QY, Schatten H (2006) Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146PubMedCrossRefGoogle Scholar
  242. Suvà ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339:1567–1570PubMedCrossRefGoogle Scholar
  243. Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987PubMedCrossRefGoogle Scholar
  244. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  245. Tan IS, Ramamurthi KS (2014) Spore formation in Bacillus subtilis. Environ Microbiol Rep 6:212–225PubMedPubMedCentralCrossRefGoogle Scholar
  246. ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13:1070–1075PubMedPubMedCentralCrossRefGoogle Scholar
  247. Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61:787–799PubMedCrossRefGoogle Scholar
  248. Thanbichler M (2009) Spatial regulation in Caulobacter crescentus. Curr Opin Microbiol 12:715–721PubMedCrossRefGoogle Scholar
  249. Torres-Padilla ME, Chambers I (2014) Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141:2173–2181PubMedCrossRefGoogle Scholar
  250. Tran V, Lim C, Xie J, Chen X (2012) Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682PubMedPubMedCentralCrossRefGoogle Scholar
  251. Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360PubMedCrossRefGoogle Scholar
  252. Vaessin H, Grell E, Wolff E, Bier E, Jan LY, Jan YN (1991) prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:941–953PubMedCrossRefGoogle Scholar
  253. Vevea JD, Swayne TC, Boldogh IR, Pon LA (2014) Inheritance of the fittest mitochondria in yeast. Trends Cell Biol 24:53–60PubMedCrossRefGoogle Scholar
  254. Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA (2014) Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res 5:277–294PubMedPubMedCentralCrossRefGoogle Scholar
  255. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedCrossRefGoogle Scholar
  256. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35PubMedCrossRefGoogle Scholar
  257. Vora S, Phillips BT (2015) Centrosome-associated degradation limits β-catenin inheritance by daughter cells after asymmetric division. Curr Biol 25:1005–1016PubMedCrossRefGoogle Scholar
  258. Wabik A, Jones PH (2015) Switching roles: the functional plasticity of adult tissue stem cells. EMBO J pii: e201490386 [Epub ahead of print]Google Scholar
  259. Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W (2006) Aurora-A acts as a tumour suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20:3453–3463PubMedPubMedCentralCrossRefGoogle Scholar
  260. Wang H, Ouyang Y, Somers WG, Chia W, Lu B (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449:96–100PubMedPubMedCentralCrossRefGoogle Scholar
  261. Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wang C, Li S, Januschke J, Rossi F, Izumi Y, Garcia-Alvarez G, Gwee SS, Soon SB, Sidhu HK, Yu F, Matsuzaki F, Gonzalez C, Wang H (2011) An ana2/ctp/mud complex regulates spindle orientation in Drosophila neuroblasts. Dev Cell 21:520–533PubMedCrossRefGoogle Scholar
  263. Williams SE, Fuchs E (2013) Oriented divisions, fate decisions. Curr Opin Cell Biol 25:749–758PubMedCrossRefGoogle Scholar
  264. Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  265. Williams SE, Ratliff LA, Postiglione MP, Knoblich JA, Fuchs E (2014) Par3-mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Nat Cell Biol 16:758–769PubMedPubMedCentralCrossRefGoogle Scholar
  266. Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric divsion: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135:161–173PubMedPubMedCentralCrossRefGoogle Scholar
  267. Wodarz A, Huttner WB (2003) Asymmetric cell division during neurogenesis of Drosophila and vertebrates. Mech Dev 120:1297–1309PubMedCrossRefGoogle Scholar
  268. Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402:544–547PubMedCrossRefGoogle Scholar
  269. Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150:1361–1374PubMedPubMedCentralCrossRefGoogle Scholar
  270. Yadlapalli S, Yamashita YM (2013) Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 498:251–254PubMedPubMedCentralCrossRefGoogle Scholar
  271. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521PubMedPubMedCentralCrossRefGoogle Scholar
  272. Yennek S, Burute M, Théry M, Tajbakhsh S (2014) Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Rep 7:961–970PubMedCrossRefGoogle Scholar
  273. Yu F, Wang H, Qian H, Kaushik R, Bownes M, Yang X, Chia W (2005) Locomotion defects, together with Pins, regulates heterotrimeric G-protein signalling during Drosophila neuroblast asymmetric divisions. Genes Dev 19:1341–1353PubMedPubMedCentralCrossRefGoogle Scholar
  274. Zheng C (2000) NuMA: a nuclear protein involved in mitotic centrosome function. Microsc Res Tech 49:467–477CrossRefGoogle Scholar
  275. Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17:43–53PubMedCrossRefGoogle Scholar
  276. Zilian O, Saner C, Hagedorn L, Lee HY, Säuberli E, Suter U, Sommer L, Aguet M (2001) Multiple roles of mouse Numb in tuning developmental cell fates. Curr Biol 11:494–501PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MRC Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
  2. 2.Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK

Personalised recommendations