Advertisement

Stem Cell Niche

  • Chenhui Wang
  • Jun Chen
  • Pei Wen
  • Pei Sun
  • Rongwen XiEmail author
Chapter

Abstract

The adult stem cells, or tissue-specific stem cells, are essential for maintaining tissue homeostasis and commonly reside in specific local microenvironment named niche. The niche keeps stem cells in multipotent/unipotent state and prevents them from precocious differentiation, and in some cases positions them to undergo asymmetric division to produce differentiated progenies for tissue regeneration. The niches employ a variety of factors including cell adhesion molecules, extra cellular matrix, growth factors and cytokines in a tissue-specific manner to regulate the resident stem cells. Stem cells in turn may also contribute to niche integrity and function. Continuous elucidation of stem cell niche regulation at the cellular and molecular level would help understanding tissue homeostasis and disease mechanisms, and may also provide useful strategies for therapeutic application of stem cells.

Keywords

Stem cell niche Drosophila Caenorhabditis Asymmetric cell division Stromal niche Epidermal niche 

References

  1. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243PubMedCrossRefGoogle Scholar
  2. Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, Laurent-Puig P, Kahn A, Robine S, Perret C et al (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132:1443–1451PubMedCrossRefGoogle Scholar
  3. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161PubMedCrossRefGoogle Scholar
  4. Asahina M, Valenta T, Silhankova M, Korinek V, Jindra M (2006) Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad. Dev Cell 11:203–211PubMedCrossRefGoogle Scholar
  5. Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51:589–599PubMedCrossRefGoogle Scholar
  6. Barker N (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  7. Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19–33PubMedCrossRefGoogle Scholar
  8. Beebe K, Lee WC, Micchelli CA (2009) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338:28–37PubMedCrossRefGoogle Scholar
  9. Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124:925–936PubMedGoogle Scholar
  10. Biteau B, Jasper H (2011) EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138:1045–1055PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648PubMedCrossRefGoogle Scholar
  14. Blessing M, Nanney LB, King LE, Jones CM, Hogan BL (1993) Transgenic mice as a model to study the role of TGF-beta-related molecules in hair follicles. Genes Dev 7:204–215PubMedCrossRefGoogle Scholar
  15. Botchkarev VA, Botchkareva NV, Roth W, Nakamura M, Chen LH, Herzog W, Lindner G, McMahon JA, Peters C, Lauster R et al (1999) Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1:158–164PubMedCrossRefGoogle Scholar
  16. Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478PubMedCrossRefGoogle Scholar
  17. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810PubMedCrossRefGoogle Scholar
  18. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59PubMedCrossRefGoogle Scholar
  19. Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334PubMedCrossRefGoogle Scholar
  20. Breault DT (2008) Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A 105:10420–10425PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344PubMedPubMedCentralCrossRefGoogle Scholar
  23. Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152PubMedPubMedCentralCrossRefGoogle Scholar
  24. Byrd DT, Kimble J (2009) Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 20:1107–1113PubMedPubMedCentralCrossRefGoogle Scholar
  25. Calvi LM (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  26. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532PubMedCrossRefGoogle Scholar
  27. Chen D, McKearin D (2003) Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 13:1786–1791PubMedCrossRefGoogle Scholar
  28. Chen S, Wang S, Xie T (2011) Restricting self-renewal signals within the stem cell niche: multiple levels of control. Curr Opin Genet Dev 21:684–689PubMedCrossRefGoogle Scholar
  29. Chesney MA, Lam N, Morgan DE, Phillips BT, Kimble J (2009) C. elegans HLH-2/E/Daughterless controls key regulatory cells during gonadogenesis. Dev Biol 331:14–25PubMedPubMedCentralCrossRefGoogle Scholar
  30. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115PubMedCrossRefGoogle Scholar
  31. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409PubMedCrossRefGoogle Scholar
  32. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577PubMedCrossRefGoogle Scholar
  33. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727PubMedPubMedCentralCrossRefGoogle Scholar
  34. Crittenden SL, Troemel ER, Evans TC, Kimble J (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120:2901–2911PubMedGoogle Scholar
  35. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663PubMedCrossRefGoogle Scholar
  36. Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17:3051–3061PubMedPubMedCentralCrossRefGoogle Scholar
  37. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  38. Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501–510PubMedCrossRefGoogle Scholar
  39. Dinardo S, Okegbe T, Wingert L, Freilich S, Terry N (2011) Lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis. Development 138:1687–1696PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235PubMedPubMedCentralCrossRefGoogle Scholar
  41. Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, Perret C, Shroyer NF, Romagnolo B (2012) Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A 109:8965–8970PubMedPubMedCentralCrossRefGoogle Scholar
  42. Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168:147–160PubMedPubMedCentralCrossRefGoogle Scholar
  43. Eliazer S, Shalaby NA, Buszczak M (2011) Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. Proc Natl Acad Sci U S A 108:7064–7069PubMedPubMedCentralCrossRefGoogle Scholar
  44. Farin HF, Van Es JH, Clevers H (2012) Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143:1518–1529 e7PubMedCrossRefGoogle Scholar
  45. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146:761–771PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283PubMedPubMedCentralCrossRefGoogle Scholar
  47. Forbes AJ, Lin H, Ingham PW, Spradling AC (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122:1125–1135PubMedGoogle Scholar
  48. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated [beta]-catenin in skin. Cell 95:605–614PubMedCrossRefGoogle Scholar
  50. Girgenrath M, Weng S, Kostek CA, Browning B, Wang M, Brown SA, Winkles JA, Michaelson JS, Allaire N, Schneider P et al (2006) TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J 25:5826–5839PubMedPubMedCentralCrossRefGoogle Scholar
  51. Guo Z, Wang Z (2009) The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development 136:3627–3635PubMedCrossRefGoogle Scholar
  52. Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–1686PubMedCrossRefGoogle Scholar
  53. Hayashi Y, Kobayashi S, Nakato H (2009) Drosophila glypicans regulate the germline stem cell niche. J Cell Biol 187:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  54. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121PubMedCrossRefGoogle Scholar
  55. Henderson ST, Gao D, Lambie EJ, Kimble J (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120:2913–2924PubMedGoogle Scholar
  56. Hetie P, de Cuevas M, Matunis E (2014) Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis. Cell Rep 7:715–721PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545PubMedCrossRefGoogle Scholar
  59. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2010) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174PubMedCrossRefGoogle Scholar
  62. Jin Z, Kirilly D, Weng C, Kawase E, Song X, Smith S, Schwartz J, Xie T (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2:39–49PubMedCrossRefGoogle Scholar
  63. Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE (2013) Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13:520–533PubMedCrossRefGoogle Scholar
  64. Kai T, Spradling A (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428:564–569PubMedCrossRefGoogle Scholar
  65. Karp X, Greenwald I (2004) Multiple roles for the E/Daughterless ortholog HLH-2 during C. elegans gonadogenesis. Dev Biol 272:460–469PubMedCrossRefGoogle Scholar
  66. Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131:1365–1375PubMedCrossRefGoogle Scholar
  67. Kidd AR 3rd, Miskowski JA, Siegfried KR, Sawa H, Kimble J (2005) A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 121:761–772PubMedCrossRefGoogle Scholar
  68. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  69. Kiel MJ, Acar M, Radice GL, Morrison SJ (2009) Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4:170–179PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294(5551):2542–2545PubMedCrossRefGoogle Scholar
  71. Kim TH, Escudero S, Shivdasani RA (2012) Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 109:3932–3937PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433PubMedCrossRefGoogle Scholar
  73. Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219PubMedCrossRefGoogle Scholar
  74. King FJ, Lin H (1999) Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development 126:1833–1844PubMedGoogle Scholar
  75. Kirilly D, Spana EP, Perrimon N, Padgett RW, Xie T (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 9:651–662PubMedCrossRefGoogle Scholar
  76. Kirilly D, Wang S, Xie T (2011) Self-maintained escort cells form a germline stem cell differentiation niche. Development 138:5087–5097PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kitadate Y, Kobayashi S (2010) Notch and Egfr signaling act antagonistically to regulate germ-line stem cell niche formation in Drosophila male embryonic gonads. Proc Natl Acad Sci U S A 107:14241–14246PubMedPubMedCentralCrossRefGoogle Scholar
  78. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597PubMedCrossRefGoogle Scholar
  79. Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E (2007) Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 104(24):10063–100638PubMedPubMedCentralCrossRefGoogle Scholar
  80. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383PubMedCrossRefGoogle Scholar
  81. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31PubMedCrossRefGoogle Scholar
  83. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601PubMedCrossRefGoogle Scholar
  84. Lam N, Chesney MA, Kimble J (2006) Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol 16:287–295PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112:231–240PubMedGoogle Scholar
  86. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157PubMedPubMedCentralCrossRefGoogle Scholar
  87. Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:44–54PubMedPubMedCentralCrossRefGoogle Scholar
  88. Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264PubMedCrossRefGoogle Scholar
  90. Li X, Han Y, Xi R (2010) Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling. Genes Dev 24:933–946PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123PubMedCrossRefGoogle Scholar
  92. Lin G, Xu N, Xi R (2009) Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells. J Mol Cell Biol 2:37–49PubMedCrossRefGoogle Scholar
  93. Liu M, Lim TM, Cai Y (2010a) The Drosophila female germline stem cell lineage acts to spatially restrict DPP function within the niche. Sci Signal 3, ra57Google Scholar
  94. Liu W, Singh SR, Hou SX (2010b) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109:992–999Google Scholar
  95. Lopez-Garcia C, Klein AM, Simons BD, Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330:822–825PubMedCrossRefGoogle Scholar
  96. López-Onieva L, Fernández-Miñán A, González-Reyes A (2008) Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary. Development 135(3):533–540PubMedCrossRefGoogle Scholar
  97. Losick VP, Morris LX, Fox DT, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21:159–171PubMedCrossRefGoogle Scholar
  98. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E (2005) Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19:1596–1611PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y, Liu LP, Gao Y, Mao Y, Li H et al (2014) Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS ONE 9:e90267PubMedPubMedCentralCrossRefGoogle Scholar
  100. Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL (2005) Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132:279–289PubMedCrossRefGoogle Scholar
  101. Marthiens V, Kazanis I, Moss L, Long K, ffrench-Constant C (2010) Adhesion molecules in the stem cell niche 鈥?more than just staying in shape? J Cell Sci 123:1613–1622Google Scholar
  102. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMedPubMedCentralCrossRefGoogle Scholar
  103. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479PubMedCrossRefGoogle Scholar
  104. Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266PubMedGoogle Scholar
  105. Miyagoe Y, Hanaoka K, Nonaka I, Hayasaka M, Nabeshima Y, Arahata K, Takeda S (1997) Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415:33–39PubMedCrossRefGoogle Scholar
  106. Montgomery RK (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 108:179–184PubMedPubMedCentralCrossRefGoogle Scholar
  107. Moriyama M, Durham AD, Moriyama H, Hasegawa K, Nishikawa S, Radtke F, Osawa M (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14:594–604PubMedCrossRefGoogle Scholar
  108. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138:2207–2215PubMedPubMedCentralCrossRefGoogle Scholar
  109. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074PubMedCrossRefGoogle Scholar
  110. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  111. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nadarajan S, Govindan JA, McGovern M, Hubbard EJ, Greenstein D (2009) MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136:2223–2234PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239PubMedCrossRefGoogle Scholar
  115. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1:277–285PubMedCrossRefGoogle Scholar
  117. O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603–614PubMedPubMedCentralCrossRefGoogle Scholar
  118. O’Reilly AM, Lee HH, Simon MA (2008) Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol 182:801–815PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedCrossRefGoogle Scholar
  120. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992PubMedCrossRefGoogle Scholar
  121. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399PubMedCrossRefGoogle Scholar
  122. Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1:458–469PubMedCrossRefGoogle Scholar
  123. Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107:69–82PubMedCrossRefGoogle Scholar
  124. Rhiner C, Diaz B, Portela M, Poyatos JF, Fernandez-Ruiz I, Lopez-Gay JM, Gerlitz O, Moreno E (2009) Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche. Development 136:995–1006PubMedCrossRefGoogle Scholar
  125. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet 40:915–920PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18:1385–1390PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sato T (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265PubMedCrossRefGoogle Scholar
  128. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418PubMedPubMedCentralCrossRefGoogle Scholar
  129. Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H (2011) Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 30:1104–1109PubMedPubMedCentralCrossRefGoogle Scholar
  130. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25PubMedGoogle Scholar
  131. Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450PubMedCrossRefGoogle Scholar
  132. Siegfried KR, Kimble J (2002) POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129:443–453PubMedGoogle Scholar
  133. Siegfried KR, Kidd AR 3rd, Chesney MA, Kimble J (2004) The sys-1 and sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of the Caenorhabditis elegans gonad. Genetics 166:171–186PubMedPubMedCentralCrossRefGoogle Scholar
  134. Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862PubMedCrossRefGoogle Scholar
  135. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973PubMedPubMedCentralCrossRefGoogle Scholar
  136. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144PubMedCrossRefGoogle Scholar
  137. Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A 99:14813–14818PubMedPubMedCentralCrossRefGoogle Scholar
  138. Song X, Xie T (2003) Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130:3259–3268PubMedCrossRefGoogle Scholar
  139. Song X, Zhu CH, Doan C, Xie T (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296:1855–1857PubMedCrossRefGoogle Scholar
  140. Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ, Xie T (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131:1353–1364PubMedCrossRefGoogle Scholar
  141. Song X, Call GB, Kirilly D, Xie T (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 134:1071–1080PubMedCrossRefGoogle Scholar
  142. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMedCrossRefGoogle Scholar
  144. Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181:1249–1260PubMedPubMedCentralCrossRefGoogle Scholar
  145. Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87:518–524PubMedGoogle Scholar
  146. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  147. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–259PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294(5551):2546–2549PubMedCrossRefGoogle Scholar
  149. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ et al (2004) Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282PubMedCrossRefGoogle Scholar
  150. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260PubMedCrossRefGoogle Scholar
  151. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264PubMedCrossRefGoogle Scholar
  152. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115PubMedPubMedCentralCrossRefGoogle Scholar
  153. Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454:1132–1136PubMedPubMedCentralCrossRefGoogle Scholar
  154. Voog J, Sandall SL, Hime GR, Resende LP, Loza-Coll M, Aslanian A, Yates JR 3rd, Hunter T, Fuller MT, Jones DL (2014) Escargot restricts niche cell to stem cell conversion in the Drosophila testis. Cell Rep 7:722–734PubMedPubMedCentralCrossRefGoogle Scholar
  155. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, Westmoreland SV, Chambon P, Scadden DT, Purton LE (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129:1097–1110PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang X, Harris RE, Bayston LJ, Ashe HL (2008) Type IV collagens regulate BMP signalling in Drosophila. Nature 455:72–77PubMedCrossRefGoogle Scholar
  157. Wang X, Pan L, Wang S, Zhou J, McDowell W, Park J, Haug J, Staehling K, Tang H, Xie T (2012) Histone H3K9 trimethylase Eggless controls germline stem cell maintenance and differentiation. PLoS Genet 7:e1002426CrossRefGoogle Scholar
  158. Ward EJ, Shcherbata HR, Reynolds SH, Fischer KA, Hatfield SD, Ruohola-Baker H (2006) Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol 16:2352–2358PubMedCrossRefGoogle Scholar
  159. Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353:831–837PubMedPubMedCentralCrossRefGoogle Scholar
  160. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430PubMedCrossRefGoogle Scholar
  161. Xi R (2009) Anchoring stem cells in the niche by cell adhesion molecules. Cell Adhes Migr 3:396–401CrossRefGoogle Scholar
  162. Xi R, Xie T (2005) Stem cell self-renewal controlled by chromatin remodeling factors. Science 310:1487–1489PubMedCrossRefGoogle Scholar
  163. Xia L, Jia S, Huang S, Wang H, Zhu Y, Mu Y, Kan L, Zheng W, Wu D, Li X et al (2010) The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 143:978–990PubMedCrossRefGoogle Scholar
  164. Xie T, Spradling AC (1998) Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94:251–260PubMedCrossRefGoogle Scholar
  165. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330PubMedCrossRefGoogle Scholar
  166. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31–43PubMedCrossRefGoogle Scholar
  167. Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550PubMedCrossRefGoogle Scholar
  168. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521PubMedPubMedCentralCrossRefGoogle Scholar
  169. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452:225–229PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M et al (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–495PubMedPubMedCentralGoogle Scholar
  171. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523PubMedCrossRefGoogle Scholar
  172. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697PubMedCrossRefGoogle Scholar
  173. Zhang J (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841PubMedCrossRefGoogle Scholar
  174. Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410:599–604PubMedCrossRefGoogle Scholar
  175. Zhao R, Xuan Y, Li X, Xi R (2008) Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 7:344–354PubMedCrossRefGoogle Scholar
  176. Zhu L (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Chenhui Wang
    • 1
  • Jun Chen
    • 1
  • Pei Wen
    • 1
  • Pei Sun
    • 1
  • Rongwen Xi
    • 1
    Email author
  1. 1.National Institute of Biological SciencesBeijingChina

Personalised recommendations