Extracellular Matrix and Tissue Regeneration

  • Zygmunt MackiewiczEmail author
  • Yrjö Tapio Konttinen
  • Emilia Kaivosoja
  • Vasily Stegajev
  • Hanoch Daniel Wagner
  • Jaakko Levón
  • Veli-Matti Tiainen


Extracellular matrix (ECM) is an important component of stem cell niche areas, which provide residence, regulate stem cell pool size and control stem cell mobilization. ECM is a complex interlinked composite of collagenous molecules, non-collagenous molecules and water-rich mucopolysaccharide ground substance. Cells are integrated to their matrix via integrin and non-integrin receptors, which control adhesion, migration, division, growth, anoikis, transdifferentiation and other cellular behaviour. ECM safeguard cells and tissue architecture and strength, but also growth factor deposits, which proteinases as signalling scissors can release in a site- and process-specific manner. Selected processes, like wound healing, cartilage and heart ECM, and tumor growth are used to exemplify participation of ECM in tissue regenerative processes.


Extracellular matrix Stem cells Regeneration 



This work was supported EU Matera grant “Bioactive Nanocomposite Constructs for Regeneration of Articular Cartilage”, European Science Foundation “Regenerative Medicine” RNP, Danish Council for Strategic Research, Finska Lakaresallskapet, Orion Foundation and EU COST 533 Biotribology Action.


  1. Agren MS, Werthen M (2007) The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int J Low Extrem Wounds 6:82–97PubMedCrossRefGoogle Scholar
  2. Agren MS, Eaglstein WH, Ferguson MW, Harding KG, Moore K, Saarialho-Kere UK, Schultz GS (2000) Causes and effects of the chronic inflammation in venous leg ulcers. Acta Derm Venereol Supplementum 210:3–17Google Scholar
  3. Alford JW, Cole BJ (2005) Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med 33:295–306PubMedCrossRefGoogle Scholar
  4. Allemann F, Mizuno S, Eid K, Yates KE, Zaleske D, Glowacki J (2001) Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J Biomed Mater Res 55:13–9PubMedCrossRefGoogle Scholar
  5. Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cell Cloning 14(8):81–101Google Scholar
  6. Angata T, Brinkman-van der Linden ECM (2002) I-type lectins. Biochim Biophys Acta 1572:294–316PubMedCrossRefGoogle Scholar
  7. Arikawa T, Matsukawa A, Watanabe K, Sakata KM, Seki M, Nagayama M, Takeshita K, Ito K, Niki T, Oomizu S, Shinonaga R, Saita N, Hirashima M (2009) Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes. Bone 44:849–857PubMedCrossRefGoogle Scholar
  8. Askari A, Brennan ML, Zhou X, Drinko J, Morehead A, Thomas JT, Topol EJ, Hazen SL, Penn MS (2003) Myeloperoxidase and plasminogen activator inhibitor-1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615–624PubMedPubMedCentralCrossRefGoogle Scholar
  9. Astudillo P, Larraín J (2014) Wnt signaling and cell-matrix adhesion. Curr Mol Med 14(2):209–220PubMedCrossRefGoogle Scholar
  10. Aszodi A, Legate KR, Nakchbandi I, Fassler R (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22:591–621PubMedCrossRefGoogle Scholar
  11. Aumailley M (2013) The laminin family. Cell Adh Migr 7(1):48–55PubMedPubMedCentralCrossRefGoogle Scholar
  12. Aumailley M, Bruckner-Tuderman L, Carter WG et al (2005) A simplified laminin nomenclature. Mini review. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  13. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383PubMedCrossRefGoogle Scholar
  14. Baldwin AK, Simpson A, Steer R, Cain SA, Kielty CM (2013) Elastic fibres in health and disease. Expert Rev Mol Med 15:e8. doi: 10.1017/erm.2013.9 PubMedCrossRefGoogle Scholar
  15. Bani D, Nistri S, Formigli L, Meacci E, Francini F, Zecchi-Orlandini S (2009) Prominent role of relaxin in improving postinfarction heart remodeling. Ann N Y Acad Sci 1160:269–277PubMedCrossRefGoogle Scholar
  16. Battiwalla M, Hematti P (2009) Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11:503–515PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC (2009) Syndecan-1 regulates αvβ3 and αvβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206:691–705PubMedPubMedCentralCrossRefGoogle Scholar
  18. Biggs LC, Goudy SL, Dunnwald M (2015) Palatogenesis and cutaneous repair: a two-headed coin. Dev Dyn 244(3):289–310PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bornes TD, Adesida AB, Jomha NM (2014) Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther 16(5):432PubMedPubMedCentralCrossRefGoogle Scholar
  21. Borza DB, Bondar O, Ninomiya Y, Sado Y, Naito I, Todd P, Hudson BG (2001) The NC1 domain of collagen IV encodes a novel network composed of the alpha 1, alpha 2, alpha 5, and alpha 6 chains in smooth muscle basement membranes. J Biol Chem 276:28532–285340PubMedCrossRefGoogle Scholar
  22. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG (2000) Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NCi domains. J Biol Chem 275:30716–30724PubMedCrossRefGoogle Scholar
  24. Brody S, Pandit A (2007) Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 83:16–43PubMedCrossRefGoogle Scholar
  25. Brooks PC, Clark RAF, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571PubMedCrossRefGoogle Scholar
  26. Bullard KM, Longaker MT, Lorenz HP (2003) Fetal wound healing: current biology. World J Surg 27:54–61PubMedCrossRefGoogle Scholar
  27. Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353PubMedCrossRefGoogle Scholar
  28. Cao H, Kang B, Lee CA, Shung KK, Hsiai T (2015) Electrical and mechanical strategies to enable cardiac repair and regeneration. IEEE Rev Biomed Eng. [Epub ahead of print]Google Scholar
  29. Capito RM, Spector M (2003) Scaffold-based articular cartilage repair. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society 22:42–50CrossRefGoogle Scholar
  30. Chang AI, Schwertschkow AH, Nolta JA, Wu J (2015) Involvement of mesenchymal stem cells in cancer progression and metastases. Curr Cancer Drug Targets 15(2):88–98PubMedCrossRefGoogle Scholar
  31. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chattopadhyay S, Raines RE, Sanchez-Adams J, Guilak F (2014) The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32CrossRefGoogle Scholar
  33. Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32(2):462–484PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH (2014) The living aortic valve: from molecules to function. Glob Cardiol Sci Pract 29(1):52–77Google Scholar
  35. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4. doi: 10.1186/s13036-015-0001-4. eCollection 2015PubMedPubMedCentralCrossRefGoogle Scholar
  36. Choi HR, Byun SY, Kwon SH, Park KC (2015) Niche interactions in epidermal stem cells. World J Stem Cells 7(2):495–501PubMedPubMedCentralCrossRefGoogle Scholar
  37. Clark RAF (1995) Wound repair: overview and general considerations. In: The molecular and cellular biology of wound repair, 2nd edn. Plenum, New York, pp 513–560Google Scholar
  38. Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 10:2981–2992PubMedCrossRefGoogle Scholar
  39. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  40. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89:201–210PubMedCrossRefGoogle Scholar
  41. Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143:577–581PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cui F-Z, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mat Sci Eng R 57:1–27CrossRefGoogle Scholar
  43. Das M, Sundell IB, Koka PS (2013) Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells 8(1):1–16PubMedGoogle Scholar
  44. Das BR, Roy A, Khan FR (2015) Cartilage oligomeric matrix protein in monitoring and prognostication of osteoarthritis and its utility in drug development. Perspect Clin Res 6(1):4–9PubMedPubMedCentralCrossRefGoogle Scholar
  45. Davis GE, Senger DR (2005) Endothelial extracellular matrix. Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107PubMedCrossRefGoogle Scholar
  46. De Francesco F, Ricci G, D’Andrea F, Nicoletti GF, Ferraro GA (2015) Human adipose stem cells (hASCs): from bench to bed-side. Tissue Eng Part B Rev. [Epub ahead of print]Google Scholar
  47. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, Lafont J, Denoix JM, Audigié F, Mallein-Gerin F, Legendre F, Galera P (2014) Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 1840(8):2414–2440PubMedCrossRefGoogle Scholar
  48. Deten A, Hölzl A, Leicht M, Barth W, Zimmer HG (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary ligation in rats. J Mol Cell Cardiol 33:1191–1207PubMedCrossRefGoogle Scholar
  49. Deten A, Volz HC, Briest W, Zimmer HG (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55:329–340PubMedCrossRefGoogle Scholar
  50. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421PubMedCrossRefGoogle Scholar
  51. Docheva D, Popov C, Mutschler W, Schieker M (2007) Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med 11:21–38PubMedPubMedCentralCrossRefGoogle Scholar
  52. Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13:68–75PubMedCrossRefGoogle Scholar
  53. Duan L, Ma B, Liang Y, Chen J, Zhu W, Li M, Wang D (2015) Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy. Am J Transl Res 7(2):194–208PubMedPubMedCentralGoogle Scholar
  54. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  55. Egles C, Claudepierre T, Manglapus MK, Champliaud MF, Brunken WJ, Hunter DD (2007) Laminins containing the beta2 chain modulate the precise organization of CNS synapses. Mol Cell Neurosci 34:388–398CrossRefGoogle Scholar
  56. Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fassler R, Muona A, Ilves M, Ruskoaho H, Takala TE, Pihlajaniemi T (2001) Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A 98:1194–1199PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ellis SJ, Tanantzapf G (2010) Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res 339:121–130PubMedCrossRefGoogle Scholar
  58. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6(265):265sr6. doi: 10.1126/scitranslmed.3009337 PubMedCrossRefGoogle Scholar
  59. Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803(1):3–9PubMedCrossRefGoogle Scholar
  60. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391PubMedCrossRefGoogle Scholar
  61. Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84-B:276–288CrossRefGoogle Scholar
  62. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J, Chu M-L (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10:3137–3146PubMedPubMedCentralGoogle Scholar
  63. Fox JM, Ghamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137:491–502PubMedCrossRefGoogle Scholar
  64. Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemela M, Ilves M, Li E, Pihlajaniemi T, Olsen BR (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J 21:1535–1544PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fulawka L, Donizy P, Halon A (2014) Cancer stem cells – the current status of an old concept: literature review and clinical approaches. Biol Res 47(1):66. doi: 10.1186/0717-6287-47-60 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q (2014) The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int 2014:648459. doi: 10.1155/2014/648459 PubMedPubMedCentralGoogle Scholar
  67. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519PubMedPubMedCentralCrossRefGoogle Scholar
  68. Getgood A, Brooks R, Fortier L, Rushton N (2009) Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg Br 91:565–576PubMedCrossRefGoogle Scholar
  69. Glowacki J, Mizuno S (2007) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344CrossRefGoogle Scholar
  70. Gohring W, Sasaki T, Heldin CH, Timpl R (1998) Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J Biochem 255:60–66PubMedCrossRefGoogle Scholar
  71. Goldring MB, Berenbaum F (2015) Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 9(22):51–63CrossRefGoogle Scholar
  72. Gray H, Bannister LH, Berry MM, Williams PL (1995) Gray’s anatomy: the anatomical basis of medicine and surgery. Churchill Livingstone, EdinburghGoogle Scholar
  73. Green EM, Mansfield JC, Bell JS, Winlove CP (2014) The structure and micromechanics of elastic tissue. Interface Focus 4(2):20130058. doi: 10.1098/rsfs.2013.0058 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gronthos S, Simmons PJ, Graves SE, Robey PG (2001) Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28:174–181PubMedCrossRefGoogle Scholar
  75. Gruber R (2015) Molecular and cellular basis of bone resorption. Wien Med Wochenschr 165(3–4):48–53PubMedCrossRefGoogle Scholar
  76. Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, Zhang J (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials 27:1095–1103PubMedCrossRefGoogle Scholar
  77. Halper J, Kjaer M (2014) Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol 802:31–47PubMedCrossRefGoogle Scholar
  78. Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2:6. doi: 10.3389/fbioe.2014.00006. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  79. Heino J (2014) Cellular signaling by collagen-binding integrins. Adv Exp Med Biol 819:143–155PubMedCrossRefGoogle Scholar
  80. Heino J, Kapyla J (2009) Cellular receptors of extracellular matrix molecules. Curr Pharm Des 15:1309–1317PubMedCrossRefGoogle Scholar
  81. Heinola T, Kouri V-P, Clarijs P, Ciferska H, Sukura A, Salo J, Konttinen YT (2010) High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clin Exp Rheumatol 28:511–518PubMedGoogle Scholar
  82. Herrick SE, Sloan P, McGurk M, Freak L, McCollum CN, Ferguson MW (1992) Sequential changes in histologic pattern and extracellular matrix deposition during the healing or chronic venous ulcers. Am J Pathol 141:1085–1095PubMedPubMedCentralGoogle Scholar
  83. Herrick SE, Ireland GW, Simon D, McCollum CN, Ferguson MW (1996) Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. J Invest Dermatol 106:187–193PubMedCrossRefGoogle Scholar
  84. Hodde JP, Johnson CE (2007) Extracellular matrix as a strategy for treating chronic wounds. Am J Clin Dermatol 8:61–66PubMedCrossRefGoogle Scholar
  85. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage 15:78–89PubMedCrossRefGoogle Scholar
  86. Hohenester E, Yurchenco PD (2013) Laminins in basement membrane assembly. Cell Adh Migr 7(1):56–63PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hudson BG (2004) The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol 15(10):2514–2527PubMedCrossRefGoogle Scholar
  88. Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348(25):2543–2556PubMedCrossRefGoogle Scholar
  89. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543PubMedCrossRefGoogle Scholar
  90. Hutmacher DW, Kirsch A, Ackermann KL, Huerzeler MB (1998) Matrix and carrier materials for bone growth factors – state of the art and future perspectives. In: Stark GB, Horch R, Tancos E (eds) Biological matrices and tissue reconstruction. Springer, Heidelberg, pp 197–206CrossRefGoogle Scholar
  91. Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Miyamoto T, Touma M, Sasayama S (2001) Neutralization of interleukin-ibeta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J Am Coll Cardiol 38:1546–1553PubMedCrossRefGoogle Scholar
  92. Ikebe C, Suzuki K (2014) Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014:951512. doi: 10.1155/2014/951512 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Imanaka-Yoshida K, Hiroe M, Nishikawa T, Ishiyama S, Shimojo T, Ohta Y, Sakakura T, Yoshida T (2001) Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Lab Investig J Tech Methods Pathol 81:1015–1024CrossRefGoogle Scholar
  94. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55, pii: S0945-053X(15)00040-2. doi: 10.1016/j.matbio.2015.02.013 Google Scholar
  95. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ (2007) Mesenchymal stem cells use integrin betai not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18:2873–2882PubMedPubMedCentralCrossRefGoogle Scholar
  96. Irwin CR, Myrillas T, Smyth M, Doogan J, Rice C, Schor SL (1998) Regulation of fibroblast-induced collagen gel contraction by interleukin-1β. Journal of Oral Pathology & Medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 27:255–259CrossRefGoogle Scholar
  97. Israeli-Rosenberg S, Manso AM, Okada H, Ross RS (2014) Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res 114(3):572–586PubMedPubMedCentralCrossRefGoogle Scholar
  98. Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, Zhu Y, Qin G, Silver M, Thorne T, Eaton L, Masuda H, Asahara T, Losordo DW (2006) Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nintric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation 113:1605–1614PubMedCrossRefGoogle Scholar
  99. Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M (2013) Toward regeneration of articular cartilage. Birth Defects Res C Embryo Today 99(3):192–202PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jälinoja J (2007) The structure and function of normal and mutated collagen IX. Thesis work, Oulu University pressGoogle Scholar
  101. Jackman CP, Shadrin IY, Carlson AL, Bursac N (2015) Human cardiac tissue engineering: from pluripotent stem cells to heart repair. Curr Opin Chem Eng 7:57–64PubMedPubMedCentralCrossRefGoogle Scholar
  102. Jacob A, Prekeris R (2015) The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3:4. doi: 10.3389/fcell.2015.00004 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Jones JC, Dehart GW, Gonzales M, Goldfinger LE (2000) Laminins: an overview. Microsc Res Tech 51:211–213PubMedCrossRefGoogle Scholar
  104. Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng 12:2291–2300PubMedCrossRefGoogle Scholar
  105. Jung Y, Brack AS (2014) Cellular mechanisms of somatic stem cell aging. Curr Top Dev Biol 107:405–438PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kaivosoja E, Barreto G, Levón K, Virtanen S, Ainola M, Konttinen YT (2012) Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med 44:635–650PubMedCrossRefGoogle Scholar
  107. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  108. Karadag A, Fisher LW (2006) Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3-integrin. J Bone Miner Res 21:1627–1636PubMedCrossRefGoogle Scholar
  109. Kato Y, Nishikawa T, Kawakishi S (1995) Antioxidative activity of tetrahydrocurcuminoids. Photochem Photobiol 61:367–372PubMedCrossRefGoogle Scholar
  110. Katsuragi N, Morishita R, Nakamura N, Ochiai T, Taniyama Y, Hasegawa Y, Kawashima K, Kaneda Y, Ogihara T, Sugimura K (2004) Periostin as a novel factor responsible for ventricular dilation. Circulation 110:1806–1813PubMedCrossRefGoogle Scholar
  111. Kefalides NA (1966) A collagen of unusual composition and a glycoprotein isolated from canine glomerular basement membrane. Biochem Biophys Res Commun 22:26–32PubMedCrossRefGoogle Scholar
  112. Kessenbrock K, Wang CY, Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44–46:184–190, pii: S0945-053X(15)00036-0. doi: 10.1016/j.matbio.2015.01.022 Google Scholar
  113. Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16(3):239–253PubMedCrossRefGoogle Scholar
  114. Khang D, Park GE, Webster TJ (2008) Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A 86-A:253–260CrossRefGoogle Scholar
  115. Kheradvar A, Groves EM, Dasi LP, Alavi SH, Tranquillo R, Grande-Allen KJ, Simmons CA, Griffith B, Falahatpisheh A, Goergen CJ, Mofrad MR, Baaijens F, Little SH, Canic S (2015) Emerging trends in heart valve engineering: Part I. Solutions for future. Ann Biomed Eng 43(4):833–843PubMedCrossRefGoogle Scholar
  116. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370PubMedPubMedCentralCrossRefGoogle Scholar
  117. Klein KC, Guha SC (2014) Cutaneous wound healing: current concepts and advances in wound care. Indian J Plast Surg 47(3):303–317PubMedPubMedCentralGoogle Scholar
  118. Klein G, Schmal O, Aicher WK (2015) Matrix metalloproteinases in stem cell mobilization. Matrix Biol 44–46:175–183, pii: S0945-053X(15)00025-6. doi: 10.1016/j.matbio.2015.01.011 Google Scholar
  119. Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB (2000) Hyaluronan oligosacchrarides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43:1165–1174PubMedCrossRefGoogle Scholar
  120. Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, Kim HK, Han JY, Cha DR (2008) Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant 23:2750–2760PubMedCrossRefGoogle Scholar
  121. Koenig A, Mueller C, Hasel C, Adler G, Menke A (2006) Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66(9):4662–4671PubMedCrossRefGoogle Scholar
  122. Kohfeldt E, Sasaki T, Gohring W, Timpl R (1998) Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol 282:99–109PubMedCrossRefGoogle Scholar
  123. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-based cartilage treatments: with or without cells? a systematic review of preclinical and clinical evidence. Arthroscopy 31(4):767–775PubMedCrossRefGoogle Scholar
  124. Kruegel J, Miosge N (2010) Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 67(17):2879–2895PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969PubMedCrossRefGoogle Scholar
  126. Kular JK, Basu S, Sharma IR (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:2041731414557112. doi: 10.1177/2041731414557112. eCollection 2014PubMedCrossRefGoogle Scholar
  127. Kuo CK, Tuan RS (2008) Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 14:1615–1627PubMedCrossRefGoogle Scholar
  128. Kvist AP, Latvanlehto A, Sund M, Eklund L, Vaisanen T, Hagg P, Sormunen R, Komulainen J, Fassler R, Pihlajaniemi T (2001) Lack of cytosolic and transmembrane domains of type XIII collagen results in progressive myopathy. Am J Pathol 159:1581–1592PubMedPubMedCentralCrossRefGoogle Scholar
  129. Laflamme MA (2007) Cardiomyocytes derived from human embryonic stem cells in prosurvival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRefGoogle Scholar
  130. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856PubMedCrossRefGoogle Scholar
  131. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803PubMedPubMedCentralCrossRefGoogle Scholar
  132. Laurens N, Engelse MA, Jungerius C, Lowik CW, van Hinsbergh VWM, Koolwijk P (2009) Single and combined effects of αvβ3 and α5β1integrins on capillary tube formation in a human fibrinous matrix. Angiogenesis 12:275–285PubMedPubMedCentralCrossRefGoogle Scholar
  133. Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, Yurchenco PD (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169:179–189PubMedPubMedCentralCrossRefGoogle Scholar
  134. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005b) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166Google Scholar
  135. Li G, Zhang XA, Wang H, Wang X, Meng CL, Chan CY, Yew DT, Tsang KS, Li K, Tsai SN, Ngai SM, Han ZC, Lin MC, He ML, Kung HF (2009) Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 9:20–30PubMedCrossRefGoogle Scholar
  136. Li M, Zhao Y, Hao H, Han W, Fu X (2015) Mesenchymal stem cell based therapy for non-healing wounds: today and tomorrow. Wound Repair Regen. doi: 10.1111/wrr.12304 Google Scholar
  137. Lim EH, Sardinha JP, Myers S (2014) Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg 41(3):231–240PubMedPubMedCentralCrossRefGoogle Scholar
  138. Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S, Margulies K (2006) Periostin and periostin-like factor in the human heart: possible therapeutic targets. Cardiovascular Pathology: the official journal of the Society for Cardiovascular Pathology 15:24–32CrossRefGoogle Scholar
  139. Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res 391(Suppl):S251–S270PubMedCrossRefGoogle Scholar
  140. Ma GF, Ali A, Verzijl N, Hanemaaijer R, TeKoppele J, Konttinen YT, Salo J (2006) Increased collagen degradation around loosened total hip replacement implants. Arthritis Rheum 54:2928–2933PubMedCrossRefGoogle Scholar
  141. Maeshima Y, Yerramalla UL, Dhanabal M, Holthaus KA, Barbashov S, Kharbanda S, Reimer C, Manfredi M, Dickerson WM, Kalluri R (2001) Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 276:31959–31968PubMedCrossRefGoogle Scholar
  142. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143PubMedCrossRefGoogle Scholar
  143. Maitra N, Flink IL, Bahl JJ, Morkin E (2000) Expression of a and P integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–725PubMedCrossRefGoogle Scholar
  144. Maquart FX, Monboisse JC (2014) Extracellular matrix and wound healing. Pathol Biol (Paris) 62(2):91–95CrossRefGoogle Scholar
  145. Maquart FX, Bellon G, Pasco S, Monboisse JC (2005) Matrikines in the regulation of extracellular matrix degradation. Biochimie 87(3–4):353–360PubMedCrossRefGoogle Scholar
  146. McKee KK, Harrison D, Capizzi S, Yurchenco PD (2007) Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem 282:21437–21447PubMedCrossRefGoogle Scholar
  147. Menasche P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50:7–17PubMedCrossRefGoogle Scholar
  148. Menasché P (2009) Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation 119:2735–2740PubMedCrossRefGoogle Scholar
  149. Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819PubMedPubMedCentralCrossRefGoogle Scholar
  150. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRefGoogle Scholar
  151. Messaritou G, East L, Roghi C, Isacke CM, Yarwood H (2009) Membrane type-1 metalloproteinase activity is regulated by the endocytic collagen receptor Endo180. J Cell Sci 122:4042–4048PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mias C, Lairez O, Trouche E, Roncalli J, Calise D, Seguelas MH, Ordener C, Piercecchi-Marti MD, Auge N, Salvayre AN, Bourin P, Parini A, Cussac D (2009) Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 11:2734–2743CrossRefGoogle Scholar
  153. Mienaltowski MJ, Birk DE (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29PubMedCrossRefGoogle Scholar
  154. Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR (2007) Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol 42:314CrossRefGoogle Scholar
  155. Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):034002. doi: 10.1088/1748-6041/10/3/034002 PubMedCrossRefGoogle Scholar
  156. Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15(12):771–785PubMedPubMedCentralCrossRefGoogle Scholar
  157. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21PubMedCrossRefGoogle Scholar
  158. Nesselmann C, Ma N, Bieback K, Wagner W, Ho A, Konttinen YT, Zhang H, Hinescu ME, Steinhoff G (2008) Mesenchymal stem cells and cardiac repair. J Cell Mol Med 12:1795–1810PubMedPubMedCentralCrossRefGoogle Scholar
  159. Nichols JE, Cortiella J, Lee J, Niles JA, Cuddihy M, Wang S, Bielitzki J, Cantu A, Mlcak R, Valdivia E, Yancy R, McClure ML, Kotov NA (2009) In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 30:1071–1079PubMedPubMedCentralCrossRefGoogle Scholar
  160. Nie D (2010) Cancer stem cell and niche. Front Biosci 2:184–193CrossRefGoogle Scholar
  161. Ninan N, Thomas S, Grohens Y (2015) Wound healing in urology. Adv Drug Deliv Rev 82-83C:93–105CrossRefGoogle Scholar
  162. Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS (2003) Alpha v beta 3 and alpha v beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6:105–119PubMedCrossRefGoogle Scholar
  163. Nishioka T, Suzuki M, Onishi K, Takakura N, Inada H, Yoshida T, Hiroe M, Imanaka-Yoshida K (2007) Eplerenone attenuates myocardial fibrosis in the angiotensin II-induced hypertensive mouse: involvement of tenascin-C induced by aldosterone-mediated inflammation. J Cardiovasc Pharmacol 49:261–268PubMedCrossRefGoogle Scholar
  164. O’Donoghue K, Fisk NM (2004) Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18:853–875PubMedCrossRefGoogle Scholar
  165. Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H (2007) Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol 292:F1141–F1150PubMedCrossRefGoogle Scholar
  166. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321PubMedPubMedCentralCrossRefGoogle Scholar
  167. Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of echanosignaling. Genes Dev 29(3):225–237PubMedPubMedCentralCrossRefGoogle Scholar
  168. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833(12):3481–3498PubMedCrossRefGoogle Scholar
  169. Park JB, Lakes RS (1992) Biomaterials: an introduction. Plenum, New YorkCrossRefGoogle Scholar
  170. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629PubMedCrossRefGoogle Scholar
  171. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminins in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207PubMedCrossRefGoogle Scholar
  172. Patel AN, Silva F, Winters AA (2015) Stem cell therapy for heart failure. Heart Fail Clin 11(2):275–286PubMedCrossRefGoogle Scholar
  173. Paweletz N, Knierim M (1989) Tumor related angiogenesis. Crit Rev Oncol Hematol 9:197–242PubMedCrossRefGoogle Scholar
  174. Penn MS, Mangi AA (2008) Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res 102(12):1471–1482PubMedPubMedCentralCrossRefGoogle Scholar
  175. Perna AM, Masini E, Nistri S, Bani ST, Bigazzi M, Bani D (2005) Human recombinant relaxin reduces heart injury and improves ventricular performance in a swine model of acute myocardial infarction. Ann N Y Acad Sci 1041:431–433PubMedCrossRefGoogle Scholar
  176. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253PubMedPubMedCentralCrossRefGoogle Scholar
  177. Poglajen G, Vrtovec B (2015) Stem cell therapy for chronic heart failure. Curr Opin Cardiol 30(3):301–310PubMedCrossRefGoogle Scholar
  178. Pommerenke H, Schreiber E, Dürr F, Nebe B, Möller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164PubMedGoogle Scholar
  179. Rabinovich GA, Rubinstein N, Toscano MA (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572:274–284PubMedCrossRefGoogle Scholar
  180. Ramsay AG, Marshall JF, Hart IR (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26:567–578PubMedCrossRefGoogle Scholar
  181. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. doi: 10.1038/mt.2015.44 PubMedGoogle Scholar
  182. Reichenberger E, Baur S, Sukotjo C, Olsen BR, Karimbux NY, Nishimura I (2000) Collagen XII mutation disrupts matrix structure of periodontal ligament and skin. J Dent Res 79:1962–1968PubMedCrossRefGoogle Scholar
  183. Rezza A, Sennett R, Rendl M (2014) Adult stem cell niches: cellular and molecular components. Curr Top Dev Biol 107:333–372PubMedCrossRefGoogle Scholar
  184. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102PubMedCrossRefGoogle Scholar
  185. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978. doi: 10.1101/cshperspect.a004978 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ricard-Blum S, Salza R (2014) Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol 23(7):457–463PubMedCrossRefGoogle Scholar
  187. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human esenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063PubMedCrossRefGoogle Scholar
  188. Risteli J, Bachinger HP, Engel J, Furthmayr H, Timpl R (1980) 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem 108:239–250PubMedCrossRefGoogle Scholar
  189. Robles DT, Berg D (2007) Abnormal wound healing: keloids. Clin Dermatol 25:26–32PubMedCrossRefGoogle Scholar
  190. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, Doran R, Becher UM, Hwang SM, Bostani T, von Maltzahn J, Hofmann A, Reining S, Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, Salama G, Schrickel JW, Kotlikoff MI, Fleischmann BK (2007) Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450:819–824PubMedCrossRefGoogle Scholar
  191. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944PubMedCrossRefGoogle Scholar
  192. Sacks MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci 362:1369–1391PubMedPubMedCentralCrossRefGoogle Scholar
  193. Sakata R, Iwakura T, Reddi AH (2015) Articular cartilage regeneration: challenges and opportunities. Tissue Eng Part B Rev. [Epub ahead of print]Google Scholar
  194. Sasaki K, Takagi M, Konttinen YT, Sasaki A, Tamaki Y, Ogino T, Santavirta S, Salo J (2007) Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation. J Biomed Mater Res B Appl Biomater 80:491–498PubMedCrossRefGoogle Scholar
  195. Sato A, Aonuma K, Imanaka-Yoshida K, Yoshida T, Isobe M, Kawase D, Kinoshita N, Yazaki Y, Hiroe M (2006) Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. J Am Coll Cardiol 47:2319–2325PubMedCrossRefGoogle Scholar
  196. Schultz GS, Ladwig G, Wysocki A (2005) Extracellular matrix: review of its roles in acute and chronic wounds. World Wide Wounds.
  197. Sekiya I, Colter DC, Prockop DJ (2001) BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 284:411–418PubMedCrossRefGoogle Scholar
  198. Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850. doi: 10.1177/2041731414541850. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  199. Shanbhag S, Woo Lee J, Kotov N (2005) Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials 26:5581–5585PubMedCrossRefGoogle Scholar
  200. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437PubMedCrossRefGoogle Scholar
  201. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303PubMedPubMedCentralCrossRefGoogle Scholar
  202. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR (2008) Collagen I-mediated upregulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor I. J Cell Biol 180:1277–1289PubMedPubMedCentralCrossRefGoogle Scholar
  203. Siebuhr AS, He Y, Gudmann NS, Gram A, Kjelgaard-Petersen CF, Qvist P, Karsdal MA, Bay-Jensen AC (2014) Biomarkers of cartilage and surrounding joint tissue. Biomark Med 8(5):713–731PubMedCrossRefGoogle Scholar
  204. Silva R, D'Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713PubMedCrossRefGoogle Scholar
  205. Snedeker JG, Gautieri A (2014) The role of collagen crosslinks in ageing and diabetes – the good, the bad, and the ugly. Muscles Ligaments Tendons J 4(3):303–308PubMedPubMedCentralGoogle Scholar
  206. Solchaga LA, Goldberg VM, Caplan AI (2001) Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res 391S:S161–S170CrossRefGoogle Scholar
  207. Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic events of wound-healing – coordinated intractions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12:373–398PubMedCrossRefGoogle Scholar
  208. Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44:1072–1084PubMedCrossRefGoogle Scholar
  209. Steinmeyer J, Konttinen YT (2006) Oral treatment options for degenerative joint disease – presence and future. Adv Drug Deliv Rev 58:168–211PubMedCrossRefGoogle Scholar
  210. Stoffels JM, Zhao C, Baron W (2013) Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 70(22):4243–4253PubMedCrossRefGoogle Scholar
  211. Sun M, Opavsky A, Stewart DJ, Rabinovtich M, Dawood F, Wen WH, Liu PP (2003) Temporal response and localization of integrins beta-1 and beta-2 in the heart following myocardial infarction: regulation by cytokines. Circulation 107:1046–1052PubMedCrossRefGoogle Scholar
  212. Sun Z, Wang S, Zhao RC (2014) The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 7:14. doi: 10.1186/1756-8722-7-14 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Sund M, Ylonen R, Tuomisto A, Sormunen R, Tahkola J, Kvist AP, Kontusaari S, Autio-Harmainen H, Pihlajaniemi T (2001) Abnormal adherence junctions in the heart and reduced angiogenesis in transgenic mice overexpressing mutant type XIII collagen. EMBO J 20:5153–5164PubMedPubMedCentralCrossRefGoogle Scholar
  214. Sunk IG, Bobacz K, Hofstaetter JG, Amoyo L, Soleiman A, Smolen J, Xu L, Li Y (2007) Increased expression of discoidin domain receptor 2 is linked to the degree of cartilage damage in human knee joints: a potential role in osteoarthritis pathogenesis. Arthritis Rheum 56:3685–3692PubMedCrossRefGoogle Scholar
  215. Takagi M (1996) Neutral proteinases and their inhibitors in the loosening of total hip prosthesis. Acta Orthop Scand 67(Suppl 271):1–29Google Scholar
  216. Takawale A, Sakamuri SS, Kassiri Z (2015) Extracellular matrix communication and turnover in cardiac physiology and pathology. Compr Physiol 5(2):687–719PubMedCrossRefGoogle Scholar
  217. Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167:71–80PubMedPubMedCentralCrossRefGoogle Scholar
  218. Tang Y, Wang B (2015) Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Res Ther 6(1):78. doi: 10.1186/s13287-015-0058-5 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Taylor D (2007) Fracture and repair of bone: a multiscale problem. J Mater Sci 42:8911–8918CrossRefGoogle Scholar
  220. Tevlin R, Walmsley GG, Marecic O, Hu MS, Wan DC, Longaker MT (2015) Stem and progenitor cells: advancing bone tissue engineering. Drug Deliv Transl Res. [Epub ahead of print]Google Scholar
  221. Thomopoulos S, Parks WC, Rifkin DB, Derwin KA (2015) Mechanisms of tendon injury and repair. J Orthop Res. doi: 10.1002/jor.22806 Google Scholar
  222. Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40:199–214PubMedPubMedCentralCrossRefGoogle Scholar
  223. Uygun BE, Stojsih SE, Matthew HW (2009) Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A 15:3499–3512PubMedPubMedCentralCrossRefGoogle Scholar
  224. van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB (2002) Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10:631–637PubMedCrossRefGoogle Scholar
  225. Van Doren SR (2015) Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 44–46:224–231, pii: S0945-053X(15)00006-2. doi: 10.1016/j.matbio.2015.01.005 Google Scholar
  226. van Osch GJ, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP (2009) Cartilage repair: past and future – lessons for regenerative medicine. J Cell Mol Med 13:792–810PubMedPubMedCentralCrossRefGoogle Scholar
  227. Veilleux N, Spector M (2005) Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage 13:278–286PubMedCrossRefGoogle Scholar
  228. Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R (2006) Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J Biol Chem 281:3494–3504PubMedCrossRefGoogle Scholar
  229. Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, Sekiguchi K, Tuuri T, Otonkoski O (2009) Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 13:2622–2633PubMedCrossRefGoogle Scholar
  230. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg (Am Vol) 76:579–592Google Scholar
  231. Warden S, Zaleske DJ, Glowacki J (2004) Fate of a chimeric joint construct in an ectopic site in SCID mice. Cell Transplant 13:161–168PubMedCrossRefGoogle Scholar
  232. Weckroth M, Vaheri A, Lauharanta J, Sorsa T, Konttinen YT (1996) Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol 106:1119–1124PubMedCrossRefGoogle Scholar
  233. Wells JM, Gaggar A, Blalock JE (2015) MMP generated matrikines. Matrix Biol 44–46:122–19, pii: S0945-053X(15)00030-X. doi: 10.1016/j.matbio.2015.01.016 Google Scholar
  234. Wilusz RE, Sanchez-Adams J, Guilak F (2014) The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32PubMedCrossRefGoogle Scholar
  235. Wong SY, Kumar S (2014) Matrix regulation of tumor-initiating cells. Prog Mol Biol Transl Sci 126:243–256PubMedCrossRefGoogle Scholar
  236. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, Pratt RE, Dzau VJ (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99:315–322PubMedCrossRefGoogle Scholar
  237. Wu M, Wu ZF, Merajver SD (2007) Rho proteins and cell-matrix interactions in cancer. Cells Tissues Organs 185:100–103PubMedCrossRefGoogle Scholar
  238. Xiang G, Schuster MD, Seki T, Kocher AA, Eshghi S, Boyle A, Itescu S (2004) Down- regulation of plasminogen activator inhibitor i expression promotes myocardial neovascularization by bone marrow progenitors. J Exp Med 200:1657–1666PubMedPubMedCentralCrossRefGoogle Scholar
  239. Xiang G, Schuster MD, Seki T, Witkowski P, Eshghi S, Itescu S (2005) Downregulated expression of plasminogen activator inhibitor-i augments myocardial neovascularization and reduces cardiomyocyte apoptosis after acute myocardial infarction. J Am Coll Cardiol 46:536–541PubMedCrossRefGoogle Scholar
  240. Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle) 4(3):119–136CrossRefGoogle Scholar
  241. Yates KE, Allemann F, Glowacki J (2005) Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Bank 6:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  242. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33PubMedCrossRefGoogle Scholar
  243. Yozai K, Shikata K, Sasaki M, Tone A, Ohga S, Usui H, Okada S, Wada J, Nagase R, Ogawa D, Shikata Y, Makino H (2005) Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J Am Soc Nephrol 16:3326–3338PubMedCrossRefGoogle Scholar
  244. Zhang Z (2014) Chondrons and the pericellular matrix of chondrocytes. Tissue Eng Part B Rev. Epub aheads of printGoogle Scholar
  245. Zhao S, Wehner R, Bornhäuser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19:607–614PubMedCrossRefGoogle Scholar
  246. Zhou J, Ding M, Zhao Z, Reeders ST (1994) Complete primary structure of the sixth chain of human basement membrane collagen, alpha 6(IV). Isolation of the cDNAs for alpha 6(IV) and comparison with five other type IV collagen chains. J Biol Chem 269:13193–13199PubMedGoogle Scholar
  247. Zielins ER, Brett EA, Luan A, Hu MS, Walmsley GG, Paik K, Senarath-Yapa K, Atashroo DA, Wearda T, Lorenz HP, Wan DC, Longaker MT (2015) Emerging drugs for the treatment of wound healing. Expert Opin Emerg Drugs 23:1–12Google Scholar
  248. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1):I1151–I1157Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zygmunt Mackiewicz
    • 1
    Email author
  • Yrjö Tapio Konttinen
    • 2
    • 3
    • 4
  • Emilia Kaivosoja
    • 2
  • Vasily Stegajev
    • 2
  • Hanoch Daniel Wagner
    • 5
  • Jaakko Levón
    • 2
  • Veli-Matti Tiainen
    • 4
  1. 1.Department of Regenerative MedicineState Research Institute Center for Innovative MedicineVilniusLithuania
  2. 2.Department of MedicineInstitute of Clinical MedicineHelsinkiFinland
  3. 3.COXA Hospital for Joint ReplacementTampereFinland
  4. 4.ORTON Orthopaedic HospitalORTON FoundationHelsinkiFinland
  5. 5.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations