Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 50))

Abstract

One of the biggest challenges for future wireless and cellular network deployment is to achieve the expected overall spectral efficiency enhancement, all the while minimizing both the additional capital expenditure for wireless operators and the carbon footprint of the information and communication technology infrastructure. In this context, it appears more and more clear that energy efficiency will be one of the key metrics to assess the performance of the future network. Thus, it is of utmost importance that both wired and wireless devices are designed for optimal energy efficiency, while satisfying the target performance for future networks in terms of quality of service. In this chapter, we start by providing an overview of this problem and discuss its implications for both the network and the end user. Along similar lines, we discuss the potential of a very promising approach to increase the energy efficiency of the network that has recently gained momentum, i.e., energy harvesting. In particular, we focus our attention on two of the most intriguing new technologies to provide energy to mobile devices, such as the so–called wireless power transfer and simultaneous information and power transfer. We introduce two wireless–empowered transceiver designs that can harvest energy from the received signals to increase their energy efficiency. More specifically, we first describe an orthogonal frequency division multiplexing transceiver capable of harvesting in–band interference, discussing its potential as a means of realizing self–sustainable transmissions and studying its performance. Subsequently, we propose a self–interference harvesting full–duplex radio architecture and shows that it can deliver both spectral and energy efficiency gains over its state–of–the–art counterparts. Our results confirm both the lack of optimization of the current technology in terms of energy efficiency and the potential of the proposed approaches to increase it. Naturally, our findings are far from being conclusive, and lot is yet to be done. However, they offer a set of interesting arguments to substantiate the idea of energy harvesting oriented transceiver design as a means to realize more energy efficient future wireless and cellular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The words power and energy are used interchangeably in this chapter, despite their conceptual difference, for the sake of simplicity.

References

  1. 3GPP: TR 36.814, Further advancements for E-UTRA physical layer aspects, v.9.0.0. Technical report, 3GPP (2010)

    Google Scholar 

  2. Agrawal, S., Pandey, S.K., Singh, J., Parihar, M.S.: Realization of efficient RF energy harvesting circuits employing different matching technique. In: 15th International Symposium Quality Electron Design (ISQED), pp. 754–761 (2014). doi:10.1109/ISQED.2014.6783403

  3. Ahmed, E., Eltawil, A.M.: All-digital self-interference cancellation technique for full-duplex systems. CoRR abs/1406.5555 (2014). arXiv:1406.5555

  4. Bharadia, D., Joshi, K., Katti, S.: Robust full duplex radio link. In: Proceedings of ACM SIGCOMM Conference, pp. 147–148 (2014)

    Google Scholar 

  5. Bharadia, D., McMilin, E., Katti, S.: Full duplex radios. In: Proceedings of ACM SIGCOMM Conference, pp. 375–386 (2013)

    Google Scholar 

  6. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984). doi:10.1109/TMTT.1984.1132833

    Article  Google Scholar 

  7. Çengel, Y., Boles, M.: Thermodynamics: An Engineering Approach. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill Higher Education, Salt Lake (2006)

    Google Scholar 

  8. Chang, C.C., Su, C.H., Wu, J.M.: A low power baseband OFDM receiver IC for fixed WiMAX communication. In: IEEE Asian Solid-State Circuits Conference, pp. 292–295 (2007). doi:10.1109/ASSCC.2007.4425688

  9. Chen, S., Beach, M.A., McGeehan, J.P.: Division-free duplex for wireless applications. IEEE Electron. Lett. 34(2), 147–148 (1998)

    Article  Google Scholar 

  10. Chiueh, T.D., Tsai, P.Y.: OFDM Baseband Receiver Design for Wireless Communications. Wiley, New York (2008)

    Google Scholar 

  11. COST Action 231: Digital mobile radio. towards future generation systems final report. Technical report, European Communities, Technical report. EUR 18957, Ch. 4 (1999)

    Google Scholar 

  12. Duarte, M., Sabharwal, A.: Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In: Conference Recreation 44th Asilomar Conference on Signals, Systems, and Computers, pp. 1558–1562 (2010). doi:10.1109/ACSSC.2010.5757799

  13. Energy Aware Radio and Network Technologies (EARTH): http://www.ict-earth.eu (2012). Accessed 25 Apr 2014

  14. Farhang, A., Marchetti, N., Figueiredo, F., Miranda, J.P.: Massive MIMO and waveform design for 5th generation wireless communication systems. In: 1st International Conference 5G Ubiquitous Connectivity (5GU), pp. 70–75 (2014). doi:10.4108/icst.5gu.2014.258195

  15. Gabriel Abadal Javier Alda, J.A.: ICT—energy—concepts towards zero—power information and communication technology, chapter electromagnetic radiation energy harvesting the rectenna based approach. In: Tech (2014)

    Google Scholar 

  16. Grover, P., Sahai, A.: Shannon meets Tesla: Wireless information and power transfer. In: IEEE International Symposium on Information Theory Processing (ISIT), pp. 2363–2367 (2010). doi:10.1109/ISIT.2010.5513714

  17. Holma, H., Toskala, A.: LTE for UMTS—OFDMA and SC-FDMA Based Radio Access. Wiley (2009). http://books.google.co.uk/books?id=AHr43Lh-roQC

  18. Holma, H., Toskala, A.: LTE for UMTS—OFDMA and SC-FDMA Based Radio Access. Wiley (2009)

    Google Scholar 

  19. Hoydis, J., Kobayashi, M., Debbah, M.: Green small-cell networks. IEEE Veh. Tech. Mag. 6(1), 37–43 (2011). doi:10.1109/MVT.2010.939904

    Article  Google Scholar 

  20. Huawei Technologies: Improving energy efficiency, lower CO2 emission and TCO. Huawei energy efficiency solution, White Paper (2010). www.mobilontelecom.com/Huawei-Energy-Efficiency-White-Paper.pdf

  21. Isheden, C., Fettweis, G.: Energy-efficient multi-carrier link adaptation with sum rate-dependent circuit power. In: IEEE Global Telecommun. Conference (GLOBECOM), pp. 1–6 (2010). doi:10.1109/GLOCOM.2010.5683700

  22. Jain, M., Choi, J.I., Kim, T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P., Katti, S., Sinha, P.: Practical, real-time, full duplex wireless. In: Proceedings of ACM 17th Annual International Conference on Mobile Computing and Networking, pp. 301–312 (2011)

    Google Scholar 

  23. J.D. Power and Associates: 2010 wireless smartphone customer satisfaction study. http://www.jdpower.com/Electronics/ratings/Wireless-Smartphone-Ratings-(Volume-1)/ (2010)

  24. Ju, H., Zhang, R.: Throughput maximization in wireless powered communication networks. In: IEEE Global Communications Conference (GLOBECOM), pp. 4086–4091 (2013). doi:10.1109/GLOCOM.2013.6831713

  25. Khan, S., Mauri, J.: Green Networking and Communications: ICT for Sustainability. CRC Press (2013). https://books.google.fr/books?id=0obNBQAAQBAJ

  26. Knox, M.: Single antenna full duplex communications using a common carrier. In: Proceedings of IEEE 13th Annual Wireless and Microwave Technology Conference, pp. 1–6 (2012)

    Google Scholar 

  27. Korpi, D., Anttila, L., Syrjälä, V., Valkama, M.: Widely-linear digital self-interference cancellation in direct-conversion full-duplex transceiver. CoRR abs/1402.6083 (2014). arXiv:1402.6083

    Google Scholar 

  28. Korpi, D., Anttila, L., Valkama, M.: Reference receiver aided digital self-interference cancellation in MIMO full-duplex transceivers. CoRR abs/1405.2202 (2014). arXiv:1405.2202

  29. Kurs, A., Karalis, A.S., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljai, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  30. Lahiri, K., Raghunathan, A., Dey, S., Panigrahi, D.: Battery-driven system design: a new frontier in low power design. In: Proceedings of the 15th International Conference VLSI Design Automation Conference, pp. 261–267 (2002). doi:10.1109/ASPDAC.2002.994932

  31. Lee, S., Zhang, R., Huang, K.: Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wireless Commun. 12(9), 4788–4799 (2013). doi:10.1109/TWC.2013.072613.130323

    Article  Google Scholar 

  32. Li, N., Zhu, W., Han, H.: Digital interference cancellation in single channel, full duplex wireless communication. In: Proceedings 8th International Conference Wireless Communications, Network Mobile Computing, pp. 1–4 (2012). doi:10.1109/WiCOM.2012.6478497

  33. Lister, D.: An operators view on green radio. Vodafone Group Research & Development, Presented at the Proceedings of the IEEE International Workshop on Green Communications (2009)

    Google Scholar 

  34. Liu, L., Zhang, R., Chua, K.C.: Wireless information and power transfer: a dynamic power splitting approach. IEEE Trans. Commun. 61(9), 3990–4001 (2013). doi:10.1109/TCOMM.2013.071813.130105

    Article  Google Scholar 

  35. Lumpkins, W.: Nikola Tesla’s dream realized: wireless power energy harvesting. IEEE Consum. Electron. Mag. 3(1), 39–42 (2014). doi:10.1109/MCE.2013.2284940

    Article  Google Scholar 

  36. Maso, M., Lakshminarayana, S., Quek, T.Q.S., Poor, H.V.: A composite approach to self-sustainable transmissions: rethinking OFDM. IEEE Trans. Commun. 62(11), 3904–3917 (2014). doi:10.1109/TCOMM.2014.2361124

    Article  Google Scholar 

  37. Maso, M., Lakshminarayana, S., Quek, T.Q.S., Poor, H.V.: Energy harvesting for self-sustainable OFDMA communications. In: IEEE Global Communications Conference (GLOBECOM), pp. 3168–3173 (2014). doi:10.1109/GLOCOM.2014.7037293

  38. Maso, M., Lakshminarayana, S., Quek, T.S.Q., Poor, H.V.: The price of self-sustainability for block transmission systems. IEEE J. Sel. Areas Commun. PP(99), 1–1 (2015). doi:10.1109/JSAC.2015.2391752

  39. Mikeka, C., Arai, H.: Sustainable Energy Harvesting Technologies—Past, Present and Future, Yen Kheng Tan Dr. (Ed.), chap. Design Issues in Radio Frequency Energy Harvesting System. InTech (2011). doi:10.5772/25348

    Google Scholar 

  40. Mills, M.P.: The cloud begins with coal - Big data, big networks, big infrastructure, and big power—An overview of the electricity used by the global digital ecosystem. Digital Power Group. http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac&c761ac (2013)

  41. Myers, R., Vickers, M., Kim, H., Priya, S.: Small scale windmill. Appl. Phys. Letters 90(5), 054–106 (2007)

    Google Scholar 

  42. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in multiuser OFDM systems with wireless information and power transfer. In: IEEE Wireless Commun. Networking Conf. (WCNC), pp. 3823–3828 (2013). doi:10.1109/WCNC.2013.6555184

  43. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H., Uusitalo, M., Timus, B., Fallgren, M.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014). doi:10.1109/MCOM.2014.6815890

    Article  Google Scholar 

  44. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005). doi:10.1109/MPRV.2005.9

    Article  Google Scholar 

  45. Pentikousis, K.: In search of energy-efficient mobile networking. IEEE Commun. Mag. 48(1), 95–103 (2010). doi:10.1109/MCOM.2010.5394036

    Article  Google Scholar 

  46. Phungamngern, N., Uthansakul, P., Uthansakul, M.: Digital and RF interference cancellation for single-channel full-duplex transceiver using a single antenna. In: Proceedings of the IEEE 10th International Conference Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–5 (2013)

    Google Scholar 

  47. Pinuela, M., Mitcheson, P., Lucyszyn, S.: Ambient rf energy harvesting in urban and semi-urban environments. IEEE Trans. Microwave Theory Tech. 61(7), 2715–2726 (2013). doi:10.1109/TMTT.2013.2262687

    Article  Google Scholar 

  48. Pinuela, M., Yates, D.C., Mitcheson, P.D., Lucyszyn, S.: Maximising the link efficiency of resonant inductive coupling for wireless power transfer. In: 1st International Workshop Wireless Energy Transport Harvesting, pp. 1–14 (2011)

    Google Scholar 

  49. Powercast Corp.: P2110–915MHz RF powerharvester receiver. Product Datasheet pp. 1–12 (2010)

    Google Scholar 

  50. Priya, S.: Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letters 87(18), 184,101 (2005)

    Google Scholar 

  51. Public Private Partnership in Horizon 2020: Creating a Smart Ubiquitous Network for the Future Internet (2013)

    Google Scholar 

  52. Sabharwal, A., Schniter, P., Guo, D., Bliss, D., Rangarajan, S., Wichman, R.: In-band full-duplex wireless: challenges and opportunities. IEEE J. Sel. Areas Commun. 32(9), 1637–1652 (2014). doi:10.1109/JSAC.2014.2330193

    Article  Google Scholar 

  53. Shao, S., Quan, X., Shen, Y., Tang, Y.: Effect of phase noise on digital self-interference cancellation in wireless full duplex. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp. 2759–2763 (2014). doi:10.1109/ICASSP.2014.6854102

  54. Tarighat, A., Sayed, A.H.: An optimum OFDM receiver exploiting cyclic prefix for improved data estimation. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, pp. IV–217–20 (2003). doi:10.1109/ICASSP.2003.1202598

  55. Varshney, L.R.: Transporting Information and Energy Simultaneously. In: International Symposium on Information Theory (ISIT), pp. 1612–1616 (2008). doi:10.1109/ISIT.2008.4595260

  56. Visser, H.J.: Indoor wireless RF energy transfer for powering wireless sensors. Radioengineering 21(4), 963–973 (2012)

    Google Scholar 

  57. Visser, H.J., Pop, P., Op het Veld, J.H.G., Vullers, R.J.M.: Remote RF battery charging. In: IET 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) (2011)

    Google Scholar 

  58. Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101(6), 1410–1423 (2013). doi:10.1109/JPROC.2013.2250891

    Article  Google Scholar 

  59. Wu, Y., Liu, Y., Xue, Q., Li, S., Yu, C.: Analytical design method of multiway dual-band planar power dividers with arbitrary power division. IEEE Trans. Microw. Theory Tech. 58(12), 3832–3841 (2010). doi:10.1109/TMTT.2010.2086712

    Google Scholar 

  60. Xiao, L., Wang, P., Niyato, D., Kim, D., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surveys Tuts. PP(99), 1–1 (2015). doi:10.1109/COMST.2014.2368999

    Google Scholar 

  61. Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.H., Su, Y., Bai, P., Wen, X., Wang, Z.L.: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7(10), 9461–9468 (2013)

    Google Scholar 

  62. Zhang, J., Lopez Perez, D., Song, H., de la Roche, G., Liu, E., Chu, X.: Small Cells—Technologies and Deployment, Second and Expanded Edition. Wiley (2014)

    Google Scholar 

  63. Zhang, R., Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wireless Commun. 12(5), 1989–2001 (2013). doi:10.1109/TWC.2013.031813.120224

    Article  Google Scholar 

  64. Zhang, W., Liu, Y., Wu, Y., Shen, J., Li, S., Yu, C., Gao, J.: A novel planar structure for implementing power divider or balun with variable power division. Prog. Electromagn. Res. C 48, 111–123 (2014)

    Article  Google Scholar 

  65. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013). doi:10.1109/TCOMM.2013.13.120855

    Article  Google Scholar 

  66. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer in multiuser OFDM systems. CoRR (2013). arXiv:1308.2462

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maso, M. (2016). Energy Harvesting Oriented Transceiver Design for 5G Networks. In: Shakir, M.Z., Imran, M.A., A. Qaraqe, K., Alouini, MS., V. Vasilakos, A. (eds) Energy Management in Wireless Cellular and Ad-hoc Networks. Studies in Systems, Decision and Control, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-27568-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27568-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27566-6

  • Online ISBN: 978-3-319-27568-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics