Skip to main content

A VANET Based Electric Vehicle Energy Management Information System

  • Chapter
  • 1275 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 50))

Abstract

Electric vehicles (EVs) are an integral part of the future transportation systems due to enhanced fuel and energy conversion efficiency. The success of electric vehicle technology requires an efficient charging management system that ensures their timely fueling. To support such a service, vehicular ad hoc networks can be used to implement an information system for EV energy management. For this purpose, it is essential for the electric vehicles to reliably and timely exchange information with the information/control servers using infrastructure nodes (INs) deployed at different geographical locations. As the INs may be located farther away from the vehicles, robust multi-hop packet transmissions are required. In this chapter, we present the design considerations for an information system for EV energy management. We propose a vehicle-to-infrastructure and infrastructure-to-vehicle (V2I-I2V) information transmission system that efficiently delivers packets for EV energy management services by mitigating the broadcast storm and hidden node problems. Moreover, the proposed system provides a signaling mechanism to select the shortest path for the downlink I2V transmissions, a challenging task due to the mobile nature of vehicles. Simulation results show that the developed system offers a low delay and reduced number of packet transmissions for different vehicle densities and mobility conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Su, H., Qiu, M., Wang, H.: Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Commun. Mag. 50(8), 62–68 (2012)

    Article  Google Scholar 

  2. Wang, M., Liang, H., Deng, R., Zhang, R., Shen, X.S.: VANET based online charging strategy for electric vehicles. In: Proceedings of the IEEE Global Telecommunications Conference Workshops, Dec 2013, pp. 4804–4809

    Google Scholar 

  3. Uhrig, R.: Greenhouse gas emissions from gasoline, hybrid-electric, and hydrogen-fueled vehicles. In: Proceedings of the IEEE EIC Climate Change Technology, May 2006, pp. 1–6

    Google Scholar 

  4. Imai, S., Takeda, N., Horii, Y.: Total efficiency of a hybrid electric vehicle. In: Proceedings of the IEEE Power Conversion Conference, vol. 2, pp. 947–950, Aug 1997

    Google Scholar 

  5. Jin, C., Sheng, X., Ghosh, P.: Optimized electric vehicle charging with intermittent renewable energy sources. IEEE J. Sel. Top. Sign. Proces. 8(6), 1063–1072 (2014)

    Article  Google Scholar 

  6. Javed, M., Ngo, D., Khan, J.: A multi-hop broadcast protocol design for emergency warning notification in highway VANETs. EURASIP J. Wirel. Commun. Netw. (179) (2014)

    Google Scholar 

  7. Javed, M., Ngo, D., Khan, J.: Distributed spatial reuse distance control for basic safety messages in SDMA-based VANETs. Veh. Commun. 2(1), 27–35 (2015)

    Google Scholar 

  8. Chen, R., Jin, W.-L., Regan, A.: Broadcasting safety information in vehicular networks: issues and approaches. IEEE Netw. 24(1), 20–25 (2010)

    Article  Google Scholar 

  9. Caveney, D.: Cooperative vehicular safety applications. IEEE Control Syst. 30(4), 38–53 (2010)

    Article  MathSciNet  Google Scholar 

  10. Javed, M., Khan, J.: Performance analysis of a time headway based rate control algorithm for VANET safety applications. In: Proceedings of the IEEE International Conference on Signal Processing and Communication Systems, pp. 1–6, Dec 2013

    Google Scholar 

  11. Javed, M., Khan, J.: A cooperative safety zone approach to enhance the performance of VANET applications. In: Proceedings of the IEEE Vehicular Technology Conference, pp. 1–5, June 2013

    Google Scholar 

  12. Morgan, Y.: Notes on DSRC & WAVE standards suite: its architecture, design, and characteristics. IEEE Commun. Surv. Tutor. 12(4), 504–518 (2010)

    Article  Google Scholar 

  13. Kenney, J.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  14. Uzcategui, R., Acosta-Marum, G.: WAVE: a tutorial. IEEE Commun. Mag. 47(5), 126–133 (2009)

    Article  Google Scholar 

  15. Stanica, R., Chaput, E., Beylot, A.-L.: Properties of the MAC layer in safety vehicular ad hoc networks. IEEE Commun. Mag. 50(5), 192–200 (2012)

    Article  Google Scholar 

  16. The Institute of Electrical and Electronics Engineers: IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), IEEE Standard for information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Tech. Rep., Dec 2007

    Google Scholar 

  17. The Institute of Electrical and Electronics Engineers: IEEE Std 1609.4-2011, IEEE standard for wireless access in vehicular environments (WAVE)—Multi-channel operation, Tech. Rep. (2011)

    Google Scholar 

  18. The Institute of Electrical and Electronics Engineers: IEEE Std 1609.1-2006, IEEE standard for wireless access in vehicular environments (WAVE)—Resource Manager, Tech. Rep. (2006)

    Google Scholar 

  19. The Institute of Electrical and Electronics Engineers: IEEE Std 1609.2-2012, IEEE standard for wireless access in vehicular environments (WAVE)—Security services for applications and management messages, Tech. Rep. (2012)

    Google Scholar 

  20. The Institute of Electrical and Electronics Engineers: IEEE Std 1609.3-2010, IEEE standard for wireless access in vehicular environments (WAVE)—Networking services, Tech. Rep. (2010)

    Google Scholar 

  21. The European Telecommunications Standards Institute: ETSI TS 102 637-2 v1.2.1—Intelligent transport systems (ITS)—Vehicular communications—Basic set of applications—Part 2: Specification of cooperative awareness basic service, Tech. Rep. (2011)

    Google Scholar 

  22. The European Telecommunications Standards Institute: ETSI ES 202 663 v1.1.0—Intelligent transport systems (ITS)—European profile standard for the physical and medium access control layer of intelligent transport systems operating in the 5 GHz frequency band, Tech. Rep. (2010)

    Google Scholar 

  23. Javed, M., Khan, J., Ngo, D.: Joint space-division multiple access and adaptive rate control for basic safety messages in VANETs. In: Proceedings of the IEEE Wireless Communication and Networking Conference, pp. 1–5 (2014)

    Google Scholar 

  24. Torrent-Moreno, M., Mittag, J., Santi, P., Hartenstein, H.: Vehicle-to-Vehicle communication: fair transmit power control for safety-critical information. IEEE Trans. Veh. Technol. 58(7), 3684–3703 (2009)

    Article  Google Scholar 

  25. Rawat, D., Popescu, D., Yan, G., Olariu, S.: Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans. Parallel Distrib. Syst. 22(9), 1528–1535 (2011)

    Google Scholar 

  26. Artimy, M.: Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 8(3), 400–412 (2007)

    Article  Google Scholar 

  27. Sepulcre, M., Gozalvez, J., Harri, J., Hartenstein, H.: Contextual communications congestion control for cooperative vehicular networks. IEEE Trans. Wirel. Commun. 10(2), 385–389 (2011)

    Article  Google Scholar 

  28. Gozalvez, J., Sepulcre, M.: Opportunistic technique for efficient wireless vehicular communications. IEEE Veh. Technol. Mag. 2(4), 33–39 (2007)

    Article  Google Scholar 

  29. Li, J., Chigan, C.: Delay-aware transmission range control for VANETs. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–6, Dec 2010

    Google Scholar 

  30. Huang, C.-L., Fallah, Y., Sengupta, R., Krishnan, H.: Adaptive intervehicle communication control for cooperative safety systems. IEEE Netw. 24(1), 6–13 (2010)

    Article  Google Scholar 

  31. Park, Y., Kim, H.: Application-level frequency control of periodic safety messages in the IEEE WAVE. IEEE Trans. Veh. Technol. 61(4), 1854–1862 (2012)

    Article  Google Scholar 

  32. Sahoo, J., Wu, E.-K., Sahu, P., Gerla, M.: Congestion-controlled-coordinator-based MAC for safety-critical message transmission in VANETs. IEEE Trans. Intell. Transp. Syst. 14(3), 1423–1437 (2013)

    Google Scholar 

  33. Bharati, S., Zhuang, W.: CAH-MAC: cooperative ad hoc MAC for vehicular networks. IEEE J. Sel. Areas Commun. 31(9), 470–479 (2013)

    Article  Google Scholar 

  34. Omar, H., Zhuang, W., Li, L.: VeMAC: a TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Trans. Mob. Comput. 12(9), 1724–1736 (2013)

    Article  Google Scholar 

  35. Hafeez, K., Zhao, L., Liao, Z., Ma, B.: A new broadcast protocol for vehicular ad hoc networks safety applications. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–5, Dec 2010

    Google Scholar 

  36. Hassan, M., Vu, H., Sakurai, T.: Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications. IEEE Trans. Veh. Technol. 60(8), 3882–3896 (2011)

    Article  Google Scholar 

  37. Ma, X., Zhang, J., Yin, X., Trivedi, K.: Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE Trans. Veh. Technol. 61(1), 46–61 (2012)

    Article  Google Scholar 

  38. Blum, J.J., Eskandarian, A.: A reliable link-layer protocol for robust and scalable intervehicle communications. IEEE Trans. Intell. Transp. Syst. 8(1), 4–13 (2007)

    Article  Google Scholar 

  39. Wisitpongphan, N., Tonguz, O., Parikh, J., Mudalige, P., Bai, F., Sadekar, V.: Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wirel. Commun. 14(6), 84–94 (2007)

    Article  Google Scholar 

  40. Tonguz, O., Wisitpongphan, N., Bai, F.: DV-CAST: a distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wirel. Commun. 17(2), 47–57 (2010)

    Article  Google Scholar 

  41. Torrent-Moreno, M.: Inter-vehicle communications: Assessing information dissemination under safety constraints. In: Proceedings of the Conference on Wireless on Demand Network Systems and Services, pp. 59–64, Jan 2007

    Google Scholar 

  42. Li, M., Zeng, K., Lou, W.: Opportunistic broadcast of event-driven warning messages in vehicular Ad Hoc networks with lossy links. Comput. Netw. 55(10), 2443–2464 (2011)

    Article  Google Scholar 

  43. Korkmaz, G., Ekici, E., Özgüner, F., Özgüner, U.: Urban multi-hop broadcast protocol for inter-vehicle communication systems. In: Proceedings of the ACM International Workshop on Vehicular Adhoc Networks, pp. 76–85, Oct 2004

    Google Scholar 

  44. Fasolo, E., Zanella, A., Zorzi, M.: An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In: Proceedings of the IEEE International Conference on Communications, pp. 3960–3965, Jun 2006

    Google Scholar 

  45. Gharbaoui, M., Valcarenghi, L., Bruno, R., Martini, B., Conti, M., Castoldi, P.: An advanced smart management system for electric vehicle recharge. In: Proceedings of the IEEE International Electric Vehicle Conference, pp. 1–8, March 2012

    Google Scholar 

  46. Wang, M., Liang, H., Zhang, R., Deng, R., Shen, X.: Mobility-aware coordinated charging for electric. IEEE J. Sel. Areas Commun. (2014)

    Google Scholar 

  47. Hess, A., Malandrino, F., Reinhardt, M.B., Casetti, C., Hummel, K.A., Barceló-Ordinas, J.M.: Optimal deployment of charging stations for electric vehicular networks. In: Proceedings of the Workshop on Urban Networking, pp. 1–6 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Awais Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Javed, M.A., Khan, J.Y., Ngo, D.T. (2016). A VANET Based Electric Vehicle Energy Management Information System. In: Shakir, M.Z., Imran, M.A., A. Qaraqe, K., Alouini, MS., V. Vasilakos, A. (eds) Energy Management in Wireless Cellular and Ad-hoc Networks. Studies in Systems, Decision and Control, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-27568-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27568-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27566-6

  • Online ISBN: 978-3-319-27568-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics