Exploring the Crystal Structure Landscape of Olanzapine

  • Rajni M. BhardwajEmail author
Part of the Springer Theses book series (Springer Theses)


An extensive experimental search for solid forms of the antipsychotic compound olanzapine identified 60 distinct solid forms including three nonsolvated polymorphs, 56 crystalline solvates, and an amorphous phase. XPac analysis of the 35 experimental crystal structures (30 from this work and 5 from the CSD) containing olanzapine show that they contain a specific, dispersion-bound, dimer structure which can adopt various arrangements and accommodate diverse solvents to produce structures with a similar moderate packing efficiency to form I. The crystal energy landscape confirms the inability of olanzapine to pack with an efficiency of more than 70 %, explains the role of solvent in stabilizing the solvate structures, and identifies a hypothetical structural type that offers an explanation for the inability to obtain the metastable forms II and III separately. The calculations find that structures that do not contain the observed dimer are thermodynamically feasible, suggesting that kinetic effects are responsible for all the observed structures being based on the dimer. Thus, this extensive screen probably has not found all possible physical forms of olanzapine, and further form diversity could be targeted with a better understanding of the role of kinetics in its crystallization.


Solvent Molecule Centrosymmetric Dimer Solution Crystallisation Random Forest Classification XRPD Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham RJ, Kricka LJ, Ledwith A (1974) The nuclear magnetic resonance spectra and conformations of cyclic compounds. Part X. Conformational equilibria in 5-substituted 10,11-dihydrodibenz[b, f]azepines. J Chem Soc, Perkin Trans 2:1648–1654CrossRefGoogle Scholar
  2. Arlin J-B, Price LS, Price SL, Florence AJ (2011) A strategy for producing predicted polymorphs: catemeric carbamazepine form V. Chem Commun 47:7074–7076CrossRefGoogle Scholar
  3. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds—A report on the fifth blind test. Acta Crystallogr B 67:535–551CrossRefGoogle Scholar
  4. Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ, Oswald IDH, Johnston BF, Florence AJ (2013) Exploring the experimental and computed crystal energy landscape of olanzapine. Cryst Growth Des 13:1602–1617CrossRefGoogle Scholar
  5. Bond AD (2007) What is a co-crystal? CrystEngComm 9:833–834CrossRefGoogle Scholar
  6. Braun DE, Karamertzanis PG, Arlin J-B, Florence AJ, Kahlenberg V, Tocher DA, Griesser UJ, Price SL (2010) Solid-state forms of β-resorcylic acid: How exhaustive should a polymorph screen be? Cryst Growth Des 11:210–220CrossRefGoogle Scholar
  7. Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL (2012) Complex polymorphic system of gallic acid—five monohydrates, three anhydrates, and over 20 solvates. Cryst Growth Des 13:19–23CrossRefGoogle Scholar
  8. Capuano B, Crosby IT, Fallon GD, Lloyd EJ, Yuriev E, Egan SJ (2003) 2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine methanol solvate monohydrate. Acta Crystallogr E 59:o1367–o1369CrossRefGoogle Scholar
  9. Chen S, Xi H, Yu L (2005) Cross-nucleation between ROY polymorphs. J Am Chem Soc 127:17439–17444CrossRefGoogle Scholar
  10. Clarke HD, Arora KK, Bass H, Kavuru P, Ong TT, Pujari T, Wojtas L, Zaworotko MJ (2010) Structure—stability relationships in cocrystal hydrates: does the promiscuity of water make crystalline hydrates the nemesis of crystal engineering? Cryst Growth Des 10:2152–2167CrossRefGoogle Scholar
  11. Clarke HD, Hickey MB, Moulton B, Perman JA, Peterson ML, Wojtas Ł, Almarsson Ö, Zaworotko MJ (2012) Crystal engineering of isostructural quaternary multicomponent crystal forms of olanzapine. Cryst Growth Des 12:4194–4201CrossRefGoogle Scholar
  12. Coelho A (2003) TOPAS user manual. Bruker AXS, GermanyGoogle Scholar
  13. Cooper TG, Hejczyk KE, Jones W, Day GM (2008) Molecular polarization effects on the relative energies of the real and putative crystal structures of valine. J Chem Theory Comput 4:1795–1805CrossRefGoogle Scholar
  14. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54CrossRefGoogle Scholar
  15. Cross WI, Blagden N, Davey RJ, Pritchard RG, Neumann MA, Roberts RJ, Rowe RC (2002) A whole output strategy for polymorph screening: Combining crystal structure prediction, graph set analysis, and targeted crystallization experiments in the case of diflunisal. Cryst Growth Des 3:151–158CrossRefGoogle Scholar
  16. Day GM (2011) Current approaches to predicting molecular organic crystal structures. Crystallogr Rev 17:3–52CrossRefGoogle Scholar
  17. Desiraju GR (1991b) Hydration in organic crystals: prediction from molecular structure. J Chem Soc Chem Commun:426–428Google Scholar
  18. Dunitz JD, Gavezzotti A (2005) Toward a quantitative description of crystal packing in terms of molecular pairs: Application to the hexamorphic crystal system, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile. Cryst Growth Des 5:2180–2189CrossRefGoogle Scholar
  19. Frank A (2002) The cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  20. Fulton B, Goa KL (1997) Olanzapine: A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs 53:281–298CrossRefGoogle Scholar
  21. Gelbrich T, Hursthouse MB (2005) A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals. CrystEngComm 7:324–336CrossRefGoogle Scholar
  22. Gelbrich T, Hursthouse MB (2006) Systematic investigation of the relationships between 25 crystal structures containing the carbamazepine molecule or a close analogue: a case study of the XPac method. CrystEngComm 8:449–461CrossRefGoogle Scholar
  23. Gillon AL, Feeder N, Davey RJ, Storey R (2003) Hydration in molecular crystalsa cambridge structural database analysis. Cryst Growth Des 3:663–673CrossRefGoogle Scholar
  24. Hulme AT, Johnston A, Florence AJ, Fernandes P, Shankland K, Bedford CT, Welch GWA, Sadiq G, Haynes DA, Motherwell WDS, Tocher DA, Price SL (2007) Search for a predicted hydrogen bonding motif—A multidisciplinary investigation into the polymorphism of 3-azabicyclo[3.3.1]nonane-2,4-dione. J Am Chem Soc 129:3649–3657CrossRefGoogle Scholar
  25. Karamertzanis PG, Pantelides CC (2007) Ab initio crystal structure prediction II. Flexible molecules. Mol Phys 105:273–291CrossRefGoogle Scholar
  26. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC, Price SL, Galek PTA, Day GM, Cruz-Cabeza AJ (2011a) Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int J Pharm 418:168–178CrossRefGoogle Scholar
  27. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2011b) Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J Chem Theory Comput 7:1998–2016CrossRefGoogle Scholar
  28. Kazantsev AV, Karamertzanis PG, Pantelides CC, Adjiman CS (2011c) CrystalOptimizer: An efficient algorithm for lattice energy minimization of organic crystals using isolated-molecule quantum mechanical calculations. Process Systems Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 1–42Google Scholar
  29. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: Visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  30. Miglani R, Miller G, Oswald I, Florence AJ (2011) Physical form screening of olanzapine and amoxapine. Acta Crystallogr A 67:C569CrossRefGoogle Scholar
  31. MOE (2002) Chemical Computing Group, 1010 Sherbrooke St. W, Montreal, Quebec, H3A 2R7. Qubec, CanadaGoogle Scholar
  32. Polla GI, Vega DR, Lanza H, Tombari DG, Baggio R, Ayala AP, Filho JM, Fernández D, Leyva G, Dartayet G (2005) Thermal behaviour and stability in Olanzapine. Int J Pharm 301:33–40CrossRefGoogle Scholar
  33. Price SL (2008) Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc Chem Res 42:117–126CrossRefGoogle Scholar
  34. Price CP, Glick GD, Matzger AJ (2006) Dissecting the Behavior of a Promiscuous Solvate Former. Angew Chem Int Ed 45:2062–2066CrossRefGoogle Scholar
  35. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490CrossRefGoogle Scholar
  36. R Development Core Team (2006) R: A language and environment for statistical computing, Version 2.10.1 and 2.11.1, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  37. Reutzel-Edens SM, Bush JK, Magee PA, Stephenson GA, Byrn SR (2003) Anhydrates and hydrates of olanzapine: crystallization, solid-state characterization, and structural relationships. Cryst Growth Des 3:897–907CrossRefGoogle Scholar
  38. Roy S, Quiñones R, Matzger AJ (2012) Structural and physicochemical aspects of Dasatinib hydrate and anhydrate phases. Cryst Growth Des 12:2122–2126CrossRefGoogle Scholar
  39. Sanger TM, Grundy SL, Gibson PJ, Namjoshi MA, Greaney MG, Tohen MF (2001) Long-term olanzapine therapy in the treatment of bipolar I disorder: an open-label continuation phase study. J Clin Psychiatry 62:273–281CrossRefGoogle Scholar
  40. Tao J, Jones KJ, Yu L (2007) Cross-nucleation between d-mannitol polymorphs in seeded crystallization. Cryst Growth Des 7:2410–2414CrossRefGoogle Scholar
  41. Thakuria R, Nangia A (2011) Polymorphic form IV of olanzapine. Acta Crystallogr C 67:o461–o463CrossRefGoogle Scholar
  42. Tiwari M, Chawla G, Bansal AK (2007) Quantification of olanzapine polymorphs using powder X-ray diffraction technique. J Pharm Biomed Anal 43:865–872CrossRefGoogle Scholar
  43. Tollefson GD, Beasley CM, Tran PV, Street JS, Krueger JA, Tamura RN, Graffeo KA, Thieme ME (1997) Olanzapine versus haloperidol in the treatment of schizophrenia and schizoaffective and schizophreniform disorders: results of an international collaborative trial. Am J Psychiatry 154:457–465CrossRefGoogle Scholar
  44. van de Streek J (2007) All series of multiple solvates (including hydrates) from the Cambridge Structural Database. CrystEngComm 9:350–352CrossRefGoogle Scholar
  45. Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022CrossRefGoogle Scholar
  46. Wawrzycka-Gorczyca I, Koziol AE, Glice M, Cybulski J (2004a) Polymorphic form II of 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine. Acta Crystallogr E 60:o66–o68CrossRefGoogle Scholar
  47. Wawrzycka-Gorczyca I, Mazur L, Koziol AE (2004b) 2-Methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine methanol solvate. Acta Crystallogr E 60:o69–o71CrossRefGoogle Scholar
  48. Wawrzycka-Gorczyca I, Borowski P, Osypiuk-Tomasik J, Mazur L, Koziol AE (2007) Crystal structure of olanzapine and its solvates. Part 3. Two and three-component solvates with water, ethanol, butan-2-ol and dichloromethane. J Mol Struct 830:188–197CrossRefGoogle Scholar
  49. Yu L, Ng K (2002) Glycine crystallization during spray drying: The pH Effect on Salt and Polymorphic Forms. J Pharm Sci 91:2367–2375CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lilly Corporate CenterEli Lilly and CompanyIndianapolisUSA

Personalised recommendations