Advertisement

Introduction

  • Rajni M. BhardwajEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Pharmaceutical molecules frequently display multiple solid-state forms including polymorphs, salts, solvates, co-crystals and amorphous solids, which may differ in their physicochemical properties and ultimately can affect the bioavailability, ease of manufacturing and stability of the drug in formulation. Small changes in substituents in structurally related molecules can affect the molecular conformation, shape, H-bonding potential and can have significant effect on the packing forces and hence the adopted crystal structures and overall solid-state diversity. Various crystallization techniques are generally used to explore the solid-state diversity of a given molecule, yet the critical factors which governs the crystallization outcome under given set of process conditions often remain unclear. Therefore, the discovery and selection of potential commercial solid forms still largely depends on empirical relationships and user experience to select the initial experimental conditions and maximize the number of solid forms discovered. Crystal structure prediction is a significantly valuable complement to the experimental physical form screening yet it is still far from routine for complex systems. Given the associated challenges, it is important to develop improved experimental approaches for discovery of solid forms and utilizing computational methods to provide a better understanding of the factors underpinning the experimental outcomes and inexpensive predictive models.

Keywords

Solid Form Tolfenamic Acid Patent Litigation Ranitidine Hydrochloride Pharmaceutical Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aakeroy CB, Salmon DJ (2005) Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 7:439–448CrossRefGoogle Scholar
  2. Aakeröy CB, Forbes S, Desper J (2009) Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 131:17048–17049CrossRefGoogle Scholar
  3. Aaltonen J, Allesø M, Mirza S, Koradia V, Gordon KC, Rantanen J (2009) Solid form screening—a review. Eur J Pharm Biopharm 71:23–37CrossRefGoogle Scholar
  4. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N, Ghogale PP, Ghosh S, Goswami PK, Goud NR, Jetti RRKR, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson AS, Puri V, Ramanan A, Rajamannar T, Reddy CM, Rodriguez-Hornedo N, Rogers RD, Row TNG, Sanphui P, Shan N, Shete G, Singh A, Sun CC, Swift JA, Thaimattam R, Thakur TS, Kumar Thaper R, Thomas SP, Tothadi S, Vangala VR, Variankaval N, Vishweshwar P, Weyna DR, Zaworotko MJ (2012) Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des 12:2147–2152CrossRefGoogle Scholar
  5. Almarsson O, Zaworotko MJ (2004) Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun 17:1889–1896Google Scholar
  6. Almarsson Ö, Hickey MB, Peterson ML, Morissette SL, Soukasene S, McNulty C, Tawa M, MacPhee JM, Remenar JF (2003) High-throughput surveys of crystal form diversity of highly polymorphic pharmaceutical compounds. Cryst Growth Des 3:927–933CrossRefGoogle Scholar
  7. Anderton C (2007) A valuable technique for polymorph screening. Am Pharm Rev 10:36–40Google Scholar
  8. Angelo G (2007) A solid-state chemist’s view of the crystal polymorphism of organic compounds. J Pharm Sci 96:2232–2241CrossRefGoogle Scholar
  9. Arlin J-B, Johnston A, Miller GJ, Kennedy AR, Price SL, Florence AJ (2010) A predicted dimer-based polymorph of 10,11-dihydrocarbamazepine (Form IV). CrystEngComm 12:64–66CrossRefGoogle Scholar
  10. Arlin J-B, Price LS, Price SL, Florence AJ (2011) A strategy for producing predicted polymorphs: catemeric carbamazepine form V. Chem Commun 47:7074–7076CrossRefGoogle Scholar
  11. Barbas R, Prohens R, Puigjaner C (2007) A new polymorph of norfloxacin complete characterization and relative stability of its trimorphic system. J Therm Anal Calorim 89:687–692CrossRefGoogle Scholar
  12. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds—a report on the fifth blind test. Acta Crystallogr B 67:535–551CrossRefGoogle Scholar
  13. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866CrossRefGoogle Scholar
  14. Beckmann W (2000) Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org Process Res Dev 4:372–383CrossRefGoogle Scholar
  15. Bernstein J (2002) Polymorphism and patents. Polymorphism in molecular crystals. Oxford University Press Inc., New York, pp 297–307Google Scholar
  16. Bernstein J (2004) Polymorphism and patents from a chemist’s point of view. In: Diversity amidst similarity: a multidisciplinary approach to polymorphs, solvates and phase realtionship, Erice, SicilyGoogle Scholar
  17. Bernstein J (2005) Cultivating crystal forms. Chem Commun 40:5007–5012Google Scholar
  18. Bernstein J (2011) Polymorphism—a perspective. Cryst Growth Des 11:632–650CrossRefGoogle Scholar
  19. Bernstein J, Davey RJ, Henck J-O (1999) Concomitant polymorphs. Angew Chem Int Ed 38:3440–3461CrossRefGoogle Scholar
  20. Bhugra C, Shmeis R, Pikal MJ (2008) Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin. J Pharm Sci 97:4446–4458CrossRefGoogle Scholar
  21. Blagden N, Davey RJ (2003) Polymorph selection: challenges for the future? Cryst Growth Des 3:873–885CrossRefGoogle Scholar
  22. Bond AD (2007) What is a co-crystal? CrystEngComm 9:833–834CrossRefGoogle Scholar
  23. Bond AD, Boese R, Desiraju GR (2007) On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew Chem Int Ed 46:618–622CrossRefGoogle Scholar
  24. Braga D, Grepioni F, Maini L (2010) The growing world of crystal forms. Chem Commun 46:6232–6242CrossRefGoogle Scholar
  25. Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL (2012) Complex polymorphic system of gallic acid—five monohydrates, three anhydrates, and over 20 solvates. Cryst Growth Des 13:19–23CrossRefGoogle Scholar
  26. Bulow J (2004) The gaming of pharmaceutical patents. In: Jaffe AB, Lerner J, Stern S (eds) Innovation policy and the economy, vol 4. The MIT Press, Cambridge, pp 145–185Google Scholar
  27. Byrn SR (1982) Polymorphism of drugs. Solid-state chemistry of drugs. Academic Press Inc., New York, pp 79–188Google Scholar
  28. Byrn SR, Pfeiffer RR, Stowell JG (1999) Hydrates and solvates. Solid state chemistry of drugs. SSCI Inc., West Lafayette, pp 233–247Google Scholar
  29. Callear S (2008) Preparation, characterisation and structural assessment of salts and co-crystals of organic compounds. Doctor of Philosophy, University of SouthamptonGoogle Scholar
  30. Capes JS, Cameron RE (2006) Contact line crystallization to obtain metastable polymorphs. Cryst Growth Des 7:108–112CrossRefGoogle Scholar
  31. Casimir A, Andrew JW (1997) Sertraline polymorph having improved water solubility. Torcan Chemical Ltd, EP 0928784A1Google Scholar
  32. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, Henry R, Spanton S, Dziki W, Porter W, Quick J, Bauer P, Donaubauer J, Narayanan BA, Soldani M, Riley D, McFarland K (2000) Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev 4:413–417CrossRefGoogle Scholar
  33. Chen S, Xi H, Yu L (2005) Cross-nucleation between ROY polymorphs. J Am Chem Soc 127:17439–17444CrossRefGoogle Scholar
  34. Cruz Cabeza AJ, Day GM, Motherwell WDS, Jones W (2006) Importance of molecular shape for the overall stability of hydrogen bond motifs in the crystal structures of various carbamazepine-type drug molecules. Cryst Growth Des 7:100–107CrossRefGoogle Scholar
  35. Davey RJ (2004) Crystallization: how come you look so good? Nature 428:374–375CrossRefGoogle Scholar
  36. Davey RJ, Blagden N, Potts GD, Docherty R (1997) Polymorphism in molecular crystals: stabilization of a metastable form by conformational mimicry. J Am Chem Soc 119:1767–1772CrossRefGoogle Scholar
  37. Davey RJ, Allen K, Blagden N, Cross WI, Lieberman HF, Quayle MJ, Righini S, Seton L, Tiddy GJT (2002) Crystal engineering—nucleation, the key step. CrystEngComm 4:257–264CrossRefGoogle Scholar
  38. Davey RJ, Schroeder SLM, ter Horst JH (2013) Nucleation of organic crystals—a molecular perspective. Angew Chem Int Ed 52:2166–2179Google Scholar
  39. Day GM (2011) Current approaches to predicting molecular organic crystal structures. Crystallogr Rev 17:3–52CrossRefGoogle Scholar
  40. Desiraju GR (2003) Crystal and co-crystal. CrystEngComm 5:466–467CrossRefGoogle Scholar
  41. Di Profio G, Tucci S, Curcio E, Drioli E (2007) Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 7:526–530CrossRefGoogle Scholar
  42. Dunitz JD, Gavezzotti A (2005) Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew Chem Int Ed 44:1766–1787CrossRefGoogle Scholar
  43. Dunitz JD, Gavezzotti A, Schweizer WB (2003) Molecular shape and intermolecular liaison: hydrocarbons and fluorocarbons. Helv Chim Acta 86:4073–4092CrossRefGoogle Scholar
  44. Eckhardt CJ, Gavezzotti A (2007) Computer simulations and analysis of structural and energetic features of some crystalline energetic materials. J Phys Chem B 111:3430–3437CrossRefGoogle Scholar
  45. Ejgenberg M, Mastai Y (2012) Crystallization on self assembled monolayers. Advances in crystallization processes. http://www.intechopen.com/books/advances-in-crystallization-processes/crystallization-on-self-assembledmonolayers
  46. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120–126CrossRefGoogle Scholar
  47. Fabbiani FPA, Allan DR, Parsons S, Pulham CR (2005) An exploration of the polymorphism of piracetam using high pressure. CrystEngComm 7:179–186CrossRefGoogle Scholar
  48. Ferrari ES, Davey RJ (2004) Solution-mediated transformation of α to β l-glutamic acid: rate enhancement due to secondary nucleation. Cryst Growth Des 4:1061–1068CrossRefGoogle Scholar
  49. Findlay WP, Bugay DE (1998) Utilization of Fourier transform-Raman spectroscopy for the study of pharmaceutical crystal forms. J Pharm Biomed Anal 16:921–930CrossRefGoogle Scholar
  50. Florence AJ (2009) The solid state. Modern pharmaceutics basic principles and systems. In: Florence AT, Siepmann J (eds) Informa Healthcare, vol 1. New York, pp 253–310Google Scholar
  51. Florence AJ, Johnston A, Price SL, Nowell H, Kennedy AR, Shankland N (2006) An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine. J Pharm Sci 95:1918–1930CrossRefGoogle Scholar
  52. Gavezzotti A (2003a) Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part I. Philosophy. CrystEngComm 5:429–438CrossRefGoogle Scholar
  53. Gavezzotti A (2003b) Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part II. Crystal energy landscapes. Cryst Eng Comm 5:439–446CrossRefGoogle Scholar
  54. Gavezzotti A (2005) Hierarchies of intermolecular potentials and forces: progress towards a quantitative evaluation. Struct Chem 16:177–185CrossRefGoogle Scholar
  55. Getsoian A, Lodaya RM, Blackburn AC (2008) One-solvent polymorph screen of carbamazepine. Int J Pharm 348:3–9CrossRefGoogle Scholar
  56. Gould PL (1986) Salt selection for basic drugs. Int J Pharm 33:201–217CrossRefGoogle Scholar
  57. Gracin S, Uusi-Penttilä M, Rasmuson ÅC (2005) Influence of ultrasound on the nucleation of polymorphs of p-aminobenzoic acid. Cryst Growth Des 5:1787–1794CrossRefGoogle Scholar
  58. Grzesiak AL, Lang M, Kim K, Matzger AJ (2003) Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci 92:2260–2271CrossRefGoogle Scholar
  59. Grzesiak AL, Uribe FJ, Ockwig NW, Yaghi OM, Matzger AJ (2006) Polymer-induced heteronucleation for the discovery of new extended solids. Angew Chem Int Ed 45:2553–2556CrossRefGoogle Scholar
  60. Guillory JK (1999) Generation of polymorphs, hydrates, solvates and amorphous solids. In: Brittain HG (ed) Polymorphism in pharmaceutical solids. Marcel Dekker Inc., New York, pp 183–226Google Scholar
  61. Ha J-M, Wolf JH, Hillmyer MA, Ward MD (2004) Polymorph selectivity under nanoscopic confinement. J Am Chem Soc 126:3382–3383CrossRefGoogle Scholar
  62. Hamilton BD, Ha J-M, Hillmyer MA, Ward MD (2011) Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc Chem Res 45:414–423CrossRefGoogle Scholar
  63. Hiremath R, Varney SW, Swift JA (2004) Selective growth of a less stable polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template. Chem Commun 23:2676–2677Google Scholar
  64. Huang L-F, Tong W-Q (2004) Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev 56:321–334CrossRefGoogle Scholar
  65. Hursthouse MB, Huth LS, Threlfall TL (2009) Why do organic compounds crystallise well or badly or ever so slowly? Why is crystallisation nevertheless such a good purification technique? Org Process Res Dev 13:1231–1240CrossRefGoogle Scholar
  66. Ibberson RM, Telling MTF, Parsons S (2007) Crystal structures and glassy phase transition behavior of cyclohexene. Cryst Growth Des 8:512–518CrossRefGoogle Scholar
  67. Infantes L, Chisholm J, Motherwell S (2003) Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm 5:480–486CrossRefGoogle Scholar
  68. Jahansouz H, Thompson KC, Brenner GS, Kaufman MJ (1999) Investigation of the polymorphism of the angiotensin II antagonist agent MK-996. Pharm Dev Technol 4:181–187CrossRefGoogle Scholar
  69. Johnston A, Florence AJ, Shankland N, Kennedy AR, Shankland K, Price SL (2007) Crystallization and crystal energy landscape of hydrochlorothiazide. Cryst Growth Des 7:705–712CrossRefGoogle Scholar
  70. Johnston A, Bardin J, Johnston BF, Fernandes P, Kennedy AR, Price SL, Florence AJ (2011) Experimental and predicted crystal energy landscapes of chlorothiazide. Cryst Growth Des 11:405–413CrossRefGoogle Scholar
  71. Karamertzanis PG, Pantelides CC (2007) Ab initio crystal structure prediction. II. Flexible molecules. Mol Phys 105:273–291CrossRefGoogle Scholar
  72. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC, Price SL, Galek PTA, Day GM, Cruz-Cabeza AJ (2011) Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int J Pharm 418:168–178CrossRefGoogle Scholar
  73. Khoshkhoo S, Anwar J (1993) Crystallization of polymorphs: the effect of solvent. J Phys D Appl Phys 26:B90CrossRefGoogle Scholar
  74. Kitamura M (1989) Polymorphism in the crystallization of L-glutamic acid. J Cryst Growth 96:541–546CrossRefGoogle Scholar
  75. Kitamura M (2003) Control of polymorphism in crystallization of amino acid. Dev Chem Eng Miner Process 11:579–602CrossRefGoogle Scholar
  76. Kitamura M (2005) Thermodynamic stability and transformation of pharmaceutical polymorphs. Pure Appl Chem 77:581–591CrossRefGoogle Scholar
  77. Kitamura M, Nakamura K (2002) Effects of solvent composition and temperature on polymorphism and crystallization behavior of thiazole-derivative. J Cryst Growth 236:676–686CrossRefGoogle Scholar
  78. Koradia V, Fontelonga de Lemos AF, Allesø M, Lopez de Diego H, Ringkjøbing-Elema M, Müllertz A, Rantanen J (2011) Phase transformations of amlodipine besylate solid forms. J Pharm Sci 100:2896–2910CrossRefGoogle Scholar
  79. Laudise RA (1970) Growth from solution. In: Holonyak N Jr (ed) Solid state physical electronic series. Prentice-Hall, Inc., USA, pp 39–73Google Scholar
  80. Llinàs A, Goodman JM (2008) Polymorph control: past, present and future. Drug Discovery Today 13:198–210CrossRefGoogle Scholar
  81. Llinas A, Box KJ, Burley JC, Glen RC, Goodman JM (2007) A new method for the reproducible generation of polymorphs: two forms of sulindac with very different solubilities. J Appl Crystallogr 40:379–381CrossRefGoogle Scholar
  82. López-Mejías V, Kampf JW, Matzger AJ (2012) Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures. J Am Chem Soc 134:9872–9875CrossRefGoogle Scholar
  83. Lu J, Wang XJ, Yang X, Ching CB (2007) Characterization and selective crystallization of famotidine polymorphs. J Pharm Sci 96:2457–2468CrossRefGoogle Scholar
  84. Lutker KM, Matzger AJ (2010) Crystal polymorphism in a carbamazepine derivative: oxcarbazepine. J Pharm Sci 99:794–803CrossRefGoogle Scholar
  85. Lutker KM, Tolstyka ZP, Matzger AJ (2007) Investigation of a privileged polymorphic motif: a dimeric ROY derivative. Cryst Growth Des 8:136–139CrossRefGoogle Scholar
  86. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999CrossRefGoogle Scholar
  87. McCrone WC (1965) Physics and chemistry of the organic solid state. In: Fox D, Labes MM, Weissberger A (eds) vol 2. Wiley Interscience, New York, pp 725–767Google Scholar
  88. McKellar SC, Urquhart AJ, Lamprou DA, Florence AJ (2012) Polymer templating of supercooled indomethacin for polymorph selection. ACS Comb Sci 14:155–159CrossRefGoogle Scholar
  89. Miller JM, Collman BM, Greene LR, Grant DJW, Blackburn AC (2005) Identifying the stable polymorph early in the drug discovery–development process. Pharm Dev Technol 10:291–297Google Scholar
  90. Morissette SL, Almarsson Ö, Peterson ML, Remenar JF, Read MJ, Lemmo AV, Ellis S, Cima MJ, Gardner CR (2004) High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 56:275–300CrossRefGoogle Scholar
  91. Mullin JW (1971) Industrial crystallsiation processes. Crystallization, vol 2, Hazell, Watson & Viney Ltd, England, pp 258–293Google Scholar
  92. Mullin JW (2001) Industrial techniques and equipment. Crystallization, Butterworth-Heinemann, Oxford, pp 315–402Google Scholar
  93. Murnane D, Marriott C, Martin GP (2008) Polymorphic control of inhalation microparticles prepared by crystallization. Int J Pharm 361:141–149CrossRefGoogle Scholar
  94. Nangia A (2008) Conformational polymorphism in organic crystals. Acc Chem Res 41:595–604CrossRefGoogle Scholar
  95. Neumann MA (2011) GRACE. Avant-garde Materials Simulation GmbH, Germany. http://www.avmatsim.eu
  96. Neumann MA, Perrin M-A (2005) Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. J Phys Chem B 109:15531–15541CrossRefGoogle Scholar
  97. Neumann MA, Leusen FJJ, Kendrick J (2008) A major advance in crystal structure prediction. Angew Chem Int Ed 47:2427–2430CrossRefGoogle Scholar
  98. Nicolaï B, Espeau P, Céolin R, Perrin MA, Zaske L, Giovannini J, Leveiller F (2007) Polymorph formation from solvate desolvation. J Therm Anal Calorim 90:337–339CrossRefGoogle Scholar
  99. Pfeiffer RR, Yang KS, Tucker MA (1970) Crystal pseudopolymorphism of cephaloglycin and cephalexin. J Pharm Sci 59:1809–1814CrossRefGoogle Scholar
  100. Pillardy J, Arnautova YA, Czaplewski C, Gibson KD, Scheraga HA (2001) Conformation-family Monte Carlo: a new method for crystal structure prediction. Proc Natl Acad Sci USA 98:12351–12356CrossRefGoogle Scholar
  101. Price SL (2004) The computational prediction of pharmaceutical crystal structures and polymorphism. Adv Drug Deliv Rev 56:301–319CrossRefGoogle Scholar
  102. Price SL (2008a) Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc Chem Res 42:117–126Google Scholar
  103. Price SL (2008b) From crystal structure prediction to polymorph prediction: interpreting the crystal energy landscape. Phys Chem Chem Phys 10:1996–2009Google Scholar
  104. Price SL (2009) Computational methodologies: toward crystal structure and polymorph prediction. In: Brittain HG (ed) Polymorphism in pharmaceutical solids, vol 192. Informa Healthcare, New York, pp 52–75Google Scholar
  105. Price S (2013) Why don’t we find more polymorphs? Acta Crystallogr B 69:313–328CrossRefGoogle Scholar
  106. Price CP, Grzesiak AL, Matzger AJ (2005) Crystalline polymorph selection and discovery with polymer heteronuclei. J Am Chem Soc 127:5512–5517CrossRefGoogle Scholar
  107. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490CrossRefGoogle Scholar
  108. Remenar JF, MacPhee JM, Larson BK, Tyagi VA, Ho JH, McIlroy DA, Hickey MB, Shaw PB, Almarsson Ö (2003) Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: the case of sertraline. Org Process Res Dev 7:990–996CrossRefGoogle Scholar
  109. Reutzel-Edens SM (2006) Achieving polymorph selectivity in the crystallization of pharmaceutical solids: basic considerations and recent advances. Curr Opin Drug Discov Devel 9:806–815Google Scholar
  110. Rodríguez-hornedo N, Murphy D (1999) Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci 88:651–660CrossRefGoogle Scholar
  111. Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodrı́guez-Hornedo N (2004) General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev 56:241–274Google Scholar
  112. Stahly GP (2007) Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst Growth Des 7:1007–1026CrossRefGoogle Scholar
  113. Stoica C, Verwer P, Meekes H, Vlieg E, van Hoof PJCM, Kaspersen F (2005) Heterogeneous 2D nucleation of the stable polymorphic form on the metastable form. J Cryst Growth 275:e1727–e1731CrossRefGoogle Scholar
  114. Sun X, Garetz BA, Myerson AS (2008) Polarization switching of crystal structure in the nonphotochemical laser-induced nucleation of supersaturated aqueous l-histidine. Cryst Growth Des 8:1720–1722CrossRefGoogle Scholar
  115. Threlfall T (2000) Crystallisation of polymorphs: thermodynamic insight into the role of solvent. Org Process Res Dev 4:384–390CrossRefGoogle Scholar
  116. Tian F, Sandler N, Aaltonen J, Lang C, Saville DJ, Gordon KC, Strachan CJ, Rantanen J, Rades T (2007) Influence of polymorphic form, morphology, and excipient interactions on the dissolution of carbamazepine compacts. J Pharm Sci 96:584–594CrossRefGoogle Scholar
  117. Tong WQ, Alva G, Carlton D, Viscomi F, Adkison K, Millar A, Dhingra O (1999) A strategic approach to the salt selection of an insoluble drug candidate. In: 13th AAPS Meeting, New OrleansGoogle Scholar
  118. Trask AV, Motherwell WDS, Jones W (2006) Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 320:114–123CrossRefGoogle Scholar
  119. USFDA, C (2011) Guidance for industry: regulatory classification of pharmaceutical co-crystals. http://www.fda.gov/downloads/Drugs/Guidances/UCM281764.pdf
  120. Uzoh OG, Cruz-Cabeza AJ, Price SL (2012) Is the fenamate group a polymorphophore? Contrasting the crystal energy landscapes of fenamic and tolfenamic acids. Cryst Growth Des 12:4230–4239CrossRefGoogle Scholar
  121. Verwer P, Leusen FJJ (2007) Computer simulation to predict possible crystal polymorphs. Reviews in computational chemistry, John Wiley & Sons, Inc., New York, 327–365Google Scholar
  122. Vippagunta SR, Brittain HG, Grant DJW (2001) Crystalline solids. Adv Drug Deliv Rev 48:3–26CrossRefGoogle Scholar
  123. Vishweshwar P, McMahon JA, Oliveira M, Peterson ML, Zaworotko MJ (2005) The predictably elusive form II of aspirin. J Am Chem Soc 127:16802–16803CrossRefGoogle Scholar
  124. Wood PA, Francis D, Marshall WG, Moggach SA, Parsons S, Pidcock E, Rohl AL (2008) A study of the high-pressure polymorphs of L-serine using ab initio structures and PIXEL calculations. CrystEngComm 10:1154–1166CrossRefGoogle Scholar
  125. Wood PA, Oliveira MA, Zink A, Hickey MB (2012) Isostructurality in pharmaceutical salts: how often and how similar? CrystEngComm 14:2413–2421CrossRefGoogle Scholar
  126. Yang X, Sarma B, Myerson AS (2012) Polymorph control of micro/nano-sized mefenamic acid crystals on patterned self-assembled Monolayer Islands. Cryst Growth Des 12:5521–5528CrossRefGoogle Scholar
  127. Yu L, Reutzel-Edens SM, Mitchell CA (2000) Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org Process Res Dev 4:396–402CrossRefGoogle Scholar
  128. Zeidan TA, Trotta JT, Chiarella RA, Oliveira MA, Hickey MB, Almarsson Ö, Remenar JF (2013) Polymorphism of Dehydro-aripiprazole, the active metabolite of the antipsychotic drug aripiprazole (abilify). Cryst Growth Des 13:2036–2046CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lilly Corporate CenterEli Lilly and CompanyIndianapolisUSA

Personalised recommendations