Skip to main content

Optimal Design of Photonic Crystal Nanostructures

  • Conference paper
  • First Online:
Simulation-Driven Modeling and Optimization

Abstract

Simulated-driven optimization plays a vital role in the optimal design of engineering systems. The presented work in this chapter considers approaches for obtaining the optimal design of some photonic crystal (PC) nanostructures. PCs are periodic dielectric/dielectric or dielectric/metallic nanostructures manipulating the flow of light. They are one of the most emerging physical systems that have attracted the attention of engineers and scientists, in the last few decades, for their promising applications in many areas. Two optimization approaches are used for achieving the optimal design of one-dimensional (1D) PC nanostructures. The first approach is based on minimax optimization criterion that best fits the design specifications, while the second one is based on design centering criterion, to maximize the probability of satisfying design specifications. The proposed approaches allow considering problems of higher dimensions, in addition, optimizing over the PC layers’ thickness and/or its material type. Two practical examples are given to demonstrate the flexibility and efficiency of these approaches. The first is a 1D PC-based optical filter operating in the visible range. The second example is a 1D PC-based spectral control filter, working in the infrared range, and enhances the efficiency of thermophotovoltaic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassan, A.S.O., Mohamed, A.S.A.: Surrogate-based circuit design centering. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization, pp. 27–49. Springer, New York (2013)

    Chapter  Google Scholar 

  2. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2011)

    Google Scholar 

  3. Prather, D.W.: Photonic Crystals, Theory, Applications and Fabrications. John Wiley & Sons, Hoboken (2009)

    Google Scholar 

  4. Srivastava, S.K., Ojha, S.P.: Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films. Prog. Electromagn. Res. 74, 181–194 (2007)

    Article  Google Scholar 

  5. Kumar, A., Suthar, B., Kumar, V., Singh, K.S., Bhargava, A.: Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal. Prog. Electromag. Res. Lett. 33, 27–35 (2012)

    Article  Google Scholar 

  6. Baldycheva, A., Tolmachev, V.A., Perova, T.S., Zharova, Y.A., Astrova, E.V., Berwick, K.: Silicon photonic crystal filter with ultrawide passband characteristics. Opt. Lett. 36(10), 1854–1856 (2011)

    Article  Google Scholar 

  7. Xu, X.-f., Ding, J.-y.: A wide band-pass filter of broad angle incidence based on one-dimensional metallo-dielectric ternary photonic crystal. Opt. Quant. Electron 41, 1027–1032 (2009)

    Article  MathSciNet  Google Scholar 

  8. He, J., Liu, P., He, Y., Hong, Z.: Narrow bandpass tunable terahertz filter based on photonic crystal cavity. Appl. Opt. 51(6), 776–779 (2012)

    Article  Google Scholar 

  9. Wang, Z.-Y., Chen, X.-M., He, X.-Q., Fan, S.-L., Yan, W.-Z.: Photonic crystal narrow filters with negative refractive index structural defects. Prog. Electromagn. Res. 80, 421–430 (2008)

    Article  Google Scholar 

  10. Kurt, H., Citrin, D.S.: Photonic crystals for biochemical sensing in the terahertz region. Appl. Phys. Lett. 87, 041108 (2005)

    Article  Google Scholar 

  11. Chubb, D.: Fundamentals of Thermophotovoltaic Energy Conversion. Elsevier, Amsterdam (2007)

    Google Scholar 

  12. Asghar, M.H., Shoaib, M., Placido, M., Naseem, S.: Modeling and preparation of practical optical filters. Curr. Appl. Phys. 9, 1046–1053 (2009)

    Article  Google Scholar 

  13. Jia, W., Deng, J., Reid, B.P.L., Wang, X., Chan, C.C.S., Wua, H., Li, X., Taylor, R.A., Danner, A.J.: Design and fabrication of optical filters with very large stopband (≈500 nm) and small passband (1 nm) in silicon-on-insulator. Photonics Nanostruct. Fundam. Appl. 10, 447–451 (2012)

    Article  Google Scholar 

  14. Celanovic, I., O’Sullivan, F., Ilak, M., Kassakian, J., Perreault, D.: Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Opt. Lett. 29(8), 863–865 (2004)

    Article  Google Scholar 

  15. Xuan, Y., Xue, C., Yuge, H.: Design and analysis of solar thermophotovoltaic systems. Renew. Energy 36(1), 374–387 (2011)

    Article  Google Scholar 

  16. Baedi, J., Arabshahi, H., Armaki, M.G., Hosseini, E.: Optical design of multilayer filter by using PSO Algorithm. Res. J. Appl. Sci. Eng. Technol. 2, 56–59 (2010)

    Google Scholar 

  17. Badaoui, H.A., Abri, M.: One-dimensional photonic crystal selective filters design using simulated annealing optimization technique. Prog. Electromag Res. B 53, 107–125 (2013)

    Article  Google Scholar 

  18. Swillam, M.A., Bakr, M.H., Li, X.: The design of multilayer optical coatings using convex optimization. Lightwave Technol. 25(4), 1078–1085 (2007)

    Article  Google Scholar 

  19. Rafat, N.H., El-Naggar, S.A., Mostafa, S.I.: Modeling of a wide band pass optical filter based on 1D ternary dielectric-metallic-dielectric photonic crystals. J. Opt. 13, 085101 (2011)

    Article  Google Scholar 

  20. Mostafa, S.I., Rafat, N.H., El-Naggar, S.A.: One-dimensional metallic-dielectric (Ag/SiO2) photonic crystals filter for thermophotovoltaic applications. Renew. Energy 45, 245–250 (2012)

    Article  Google Scholar 

  21. Koziel, S., Leifsson, L.: Surrogate-Based Modeling and Optimization. Springer, New York (2013)

    Book  MATH  Google Scholar 

  22. Hassan, A.S.O.: Normed distances and their applications in optimal circuit design. Optim. Eng. 4(3), 197–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hassan, A.S.O., Mohamed, A.S.A., El-Sharabasy, A.Y.: Statistical microwave circuit optimization via a non-derivative trust region approach and space mapping surrogates. In IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, USA, pp. 1–4, (2011)

    Google Scholar 

  24. Hassan A.S.O., Mohamed A.S.A., El-Sharabasy A.Y.: EM-based yield optimization exploiting trust-region optimization and space mapping technology. Int. J. RF Microw. CAE, Wiley, (2014, in Press). doi:10.1002/mmce.20878

    Google Scholar 

  25. Hassan, A.S.O., Abdel-Naby, A.: A new hybrid method for optimal circuit design using semi-definite programming. Eng. Optm. 44(6), 725–740 (2012)

    Article  MathSciNet  Google Scholar 

  26. Waren, A.D., Lasdon, L.S., Suchman, D.F.: Optimization in engineering design. Proc. IEEE 55, 1885–1897 (1967)

    Article  Google Scholar 

  27. Charalambous, C., Conn, A.R.: An efficient method to solve the minimax problem directly. SIAM J. Numer. Anal. 15(1), 162–187 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bandler, J.W., Kellermann, W., Madsen, K.: A superlinearly convergent minimax algorithm for microwave circuit design. IEEE Trans. Microw. Theory Tech. 33, 1519–1530 (1985)

    Article  Google Scholar 

  29. Hald, J., Madsen, K.: Combined LP and quasi-Newton methods for minimax optimization. Math. Program. 20, 49–62 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chemmangat, K., Ferranti, F., Dhaene, T., Knockaert, L.: Optimization of high-speed electromagnetic systems with accurate parametric macromodels generated using sequential sampling of the design space. In Electromagnetics in Advanced Applications (ICEAA), International Conference on. IEEE, Cape Town, pp. 128–131, (2012)

    Google Scholar 

  31. Jen, J., Qian, M., Aliyazicioglu, Z., Hwang, H.K.: Performance studies of antenna pattern design using the minimax algorithm. In Proceedings of the 5th WSEAS international conference on Circuits, systems, signal and telecommunications, World Scientific and Engineering Academy and Society (WSEAS), Wisconsin, USA, pp. 50–55, (2011)

    Google Scholar 

  32. Koziel, S., Leifsson, L.: Low-cost parameter extraction and surrogate optimization for space mapping design using Em-based coarse models. Prog. Electromag. Res. B 31, 117–137 (2011)

    Article  Google Scholar 

  33. Kats, B.M., Lvov, A.A., Meschanov, V.P., Shatalov, E.M., Shikova, L.V.: Synthesis of a wideband multiprobe reflectometer. Microw. Theory Tech. IEEE Trans. 56, 507–514 (2008)

    Article  Google Scholar 

  34. Hassan, A.S.O., Abdel-Malek, H.L., Mohamed, A.S.A.: Optimal design of computationally expensive EM-based systems: a Surrogate-based approach. In: Koziel, S., Leifsson, L., Yang, X.-S. (eds.) Solving Computationally Expensive Engineering Problems, pp. 171–194. Springer, New York (2014)

    Google Scholar 

  35. Singhal, K., Pinel, J.F.: Statistical design centering and tolerancing using parametric sampling. IEEE Trans. Circuits Syst. 28, 692–702 (1981)

    Article  Google Scholar 

  36. Pendry, J.B.: Photonic band structures. J. Mod. Opt. 41, 209–229 (1994)

    Article  Google Scholar 

  37. Botten, L.C., Nicorovici, N.A., McPhedran, R.C., de Martijn Sterke, C., Asatryan, A.A.: Photonic band structure calculations using scattering matrices. Phys. Rev. E 64(4), 046603 (2001)

    Article  Google Scholar 

  38. Hassan, A.S.O., Mohamed, A.S.A., Maghrabi, M.M.T., Rafat, N.H.: Optimal design of 1D photonic crystal filters using minimax optimization approach. Appl. Opt. 54(6), 1399–1409 (2015)

    Article  Google Scholar 

  39. Matlab, Version 7.10., The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760–2098, USA, (2010)

    Google Scholar 

  40. Nehmetallah, G., Aylo, R., Powers, P., Sarangan, A., Gao, J., Li, H., Achari, A., Banerjee, P.P.: Co-sputtered SiC + Ag nanomixtures as visible wavelength negative index metamaterials. Opt. Express 20, 7095–7100 (2012)

    Article  Google Scholar 

  41. Chen, S., Wang, Y., Yao, D., Song, Z.: Absorption enhancement in 1D Ag/SiO2 metallic-dielectric photonic crystals. Opt. Appl. 39, 473–479 (2009)

    Google Scholar 

  42. Jaksic, Z., Maksimovic, M., Sarajlic, M.: Silver–silica transparent metal structures as bandpass filters for the ultraviolet range. J. Opt. A Pure Appl. Opt. 7, 51–55 (2005). doi:10.1088/1464-4258/7/1/008

    Article  Google Scholar 

  43. Ni, X., Liu, Z., Kildishev, A.V.: PhotonicsDB: Optical constants. [Online]. Available: http://nanohub.org/resources/3692, (2010)

  44. Hocevar, D.E., Lightner, M.R., Trick, T.N.: An extrapolated yield approximation for use in yield maximization. IEEE Trans. Comput. Aided Des. 3, 279–287 (1984)

    Article  Google Scholar 

  45. Styblinski, M.A., Oplaski, L.J.: Algorithms and software tools for IC yield optimization based on fundamental fabrication parameters. IEEE Trans. Comput. Aided Des. 5, 79–89 (1986)

    Article  Google Scholar 

  46. Yu, T., Kang, S.M., Hajj, I.N., Trick, T.N.: Statistical performance modeling and parametric yield estimation of MOS VLSI. IEEE Trans. Comput. Aided Des. 6, 1013–1022 (1987)

    Article  Google Scholar 

  47. Elias, N.J.: Acceptance sampling: an efficient accurate method for estimating and optimizing parametric yield. IEEE J. Solid State Circuits 29, 323–327 (1994)

    Article  Google Scholar 

  48. Zaabab, A.H., Zhang, Q.J., Nakhla, M.: A neural network modeling approach to circuit optimization and statistical design. IEEE Trans. Microw. Theory Tech. 43, 1349–1358 (1995)

    Article  Google Scholar 

  49. Keramat, M., Kielbasa, R.: A study of stratified sampling in variance reduction techniques for parametric yield estimations. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 45(5), 575–583 (1998)

    Article  Google Scholar 

  50. Hassan, A.S.O., Abdel-Malek, H.L., Rabie, A.A.: None-derivative design centering algorithm using trust region optimization and variance reduction. Eng. Optim. 38, 37–51 (2006)

    Article  MathSciNet  Google Scholar 

  51. Metropolis, N., Ulam, S.: The Monte-Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hocevar, D.E., Lightner, M.R., Trick, T.N.: A study of variance reduction techniques for estimating circuit yields. IEEE Trans. Comput. Aided Des. 2(3), 180–192 (1983)

    Article  Google Scholar 

  53. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  54. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 225–297. Springer, New York (2006)

    Google Scholar 

  55. Powell, M.J.D.: A view of algorithms for optimization without derivatives. Technical Report NA 2007/03, University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge, England, (2007)

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Slawomir Koziel, School of Science and Engineering, Reykjavik University, for his invitation to contribute to this book. Authors also would like to acknowledge the contributions to the original work by, Eng. Mahmoud Taha Maghrabi, Faculty of Engineering, Cairo University, now with Electrical and Computer Engineering Department, McMaster University, which has been reviewed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Karim S. O. Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassan, AK.S.O., Rafat, N.H., Mohamed, A.S.A. (2016). Optimal Design of Photonic Crystal Nanostructures. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-27517-8_10

Download citation

Publish with us

Policies and ethics