Skip to main content

Generalized Collisional Radiative Model Using Screened Hydrogenic Levels

  • Chapter
  • First Online:
Modern Methods in Collisional-Radiative Modeling of Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 90))

Abstract

Collisional-radiative (CR) models are used to obtain atomic level population distributions and radiative properties in plasmas. These quantities are used to help design experiments, to provide data for radiative energy transport in radiation-hydrodynamic simulations, and to diagnose laboratory and astrophysical plasmas whose conditions are difficult to or impossible to directly measure. CR models are constructed by coupling a set of electronic energy levels with spontaneous, collisional, and radiation-driven transitions . Since the number of atomic levels and transitions necessary to build a CR model can be prohibitively high, especially for many-electron ions, models are often customized for specific applications by tailoring the structure based on expected plasma conditions. On the other hand, there remains a need for models that are general enough to predict charge state distributions and radiative properties with reasonable accuracy for plasmas over a wide range of plasma conditions. Such generalized models are especially useful for design simulations, which access a wide range of conditions, and for preliminary analysis of spectroscopic data. This chapter describes a class of generalized CR models based on screened-hydrogenic atomic levels and rates. These models have been applied to a wide variety of applications and have demonstrated reliable performance over a wide range of plasma conditions, from the low-density coronal limit to local thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-K. Chung et al., High Energy Density Phys. 1, 3 (2005)

    Article  ADS  Google Scholar 

  2. H.A. Scott, S.B. Hansen, High Energy Density Phys. 6, 39 (2010)

    Article  ADS  Google Scholar 

  3. M.B. Schneider et al., Can. J. Phys. 86, 259–266(8) (2008)

    Google Scholar 

  4. K.U. Akli et al., Phys. Plasmas 14, 023102 (2007)

    Article  ADS  Google Scholar 

  5. M.E. Foord et al., J. Quant. Spectrosc. Radiat. Transfer 99, 712 (2006)

    Article  ADS  Google Scholar 

  6. H.-K. Chung, R.W. Lee, High Energy Density Phys. 5, 1 (2009)

    Article  ADS  Google Scholar 

  7. H.-K. Chung, K.B. Fournier, R.W. Lee, High Energy Density Phys. 2, 7 (2006)

    Article  ADS  Google Scholar 

  8. B.I. Cho et al., Phys. Rev. Lett. 109, 245003 (2012)

    Article  ADS  Google Scholar 

  9. R.M. More, in Atomic physics in inertial confinement fusion, Applied Atomic Collision Physics, vol. 2 (Academic Press, New York, 1982)

    Google Scholar 

  10. H. Mayer, Methods of Opacity Calculations, LA-647, Los Alamos National Laboratory (1948)

    Google Scholar 

  11. A. Bar-Shalom et al., Phys. Rev. A 40, 3183 (1989)

    Article  ADS  Google Scholar 

  12. C. Bauche-Arnoult, J. Bauche, M. Klapisch, Phys. Rev. A 20, 2424 (1979)

    Article  ADS  Google Scholar 

  13. J. Bauche, C. Bauche-Arnoult, M. Klapisch, Adv. At. Mol. Phys. 23, 131 (1988)

    Google Scholar 

  14. O. Peyrusse, J. Phys. B: At. Mol. Opt. Phys. 32 (1999)

    Google Scholar 

  15. C. Bauche-Arnoult, J. Bauche, J. Quant. Spectrosc. Radiat. Transfer 71,189 (2001)

    Google Scholar 

  16. M.A. Mendoza et al., High Energy Density Phys. 7, 169 (2011)

    Article  ADS  Google Scholar 

  17. Y.T. Lee, J. Quant. Spectrosc. Radiat. Transfer 38, 131 (1987)

    Article  ADS  Google Scholar 

  18. R. Marchand, S. Caille, Y.T. Lee, J. Quant. Spectrosc. Radiat. Transfer 43, 149 (1990)

    Article  ADS  Google Scholar 

  19. R.W. Lee, J.K. Nash, Y. Ralchenko, J. Quant. Spectrosc. Radiat. Transfer 58, 737 (1997)

    Article  ADS  Google Scholar 

  20. C. Bowen et al., J. Quant. Spectrosc. Radiat. Transfer 81, 71 (2003)

    Article  ADS  Google Scholar 

  21. C. Bowen et al., J. Quant. Spectrosc. Radiat. Transfer 99, 102 (2005)

    Article  ADS  Google Scholar 

  22. J.G. Rubiano et al., High Energy Density Phys. 3, 225 (2007)

    Article  ADS  Google Scholar 

  23. C.J. Fontes et al., High Energy Density Phys. 5, 15 (2009)

    Article  ADS  Google Scholar 

  24. H.-K. Chung et al., High Energy Density Phys. 9, 645 (2013)

    Article  ADS  Google Scholar 

  25. S.B. Hansen, J. Bauche, C. Bauche-Arnoult, High Energy Density Phys. 7, 27 (2011)

    Article  ADS  Google Scholar 

  26. S.B. Hansen et al., High Energy Density Phys. 3, 109 (2007)

    Article  ADS  Google Scholar 

  27. J. Oxenius, Kinetic Theory of Particles and Photons (Springer, Berlin, 1986), pp. 21–65

    Google Scholar 

  28. H. Kramers, Philos Mag. 46, 836 (1923)

    Article  Google Scholar 

  29. H. Van Regemorter, Ap. J. 136, 906 (1962)

    Article  ADS  Google Scholar 

  30. R. Mewe, Astron. Astrophys. 20, 215 (1972)

    ADS  Google Scholar 

  31. A. Burgess, M.C. Chidichimo, Mon. Not. R. Astr. Soc. 203, 1269 (1983)

    Article  ADS  Google Scholar 

  32. W. Lotz, Z. Phys. 216, 241 (1968) Z. Phys. 220, 266 (1969)

    Google Scholar 

  33. E.C. Shoub, Ap J. Suppl. Ser. 34, 259 (1977)

    Article  ADS  Google Scholar 

  34. I.I. Sobelman, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, 2nd edn. (Springer, Berlin, 1995), pp. 120–124

    Google Scholar 

  35. D.R. Inglis, E. Teller, Astrophys. J. 90, 439 (1939)

    Article  ADS  MATH  Google Scholar 

  36. J.C. Stewart, K.D. Pyatt, Astrophys. J. 144, 1203 (1966)

    Article  ADS  Google Scholar 

  37. D. Mihalas, Stellar Atmospheres, 2nd edn., Ch. 4, 9,11 (W.H. Freeman, San Francisco, 1978)

    Google Scholar 

  38. O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012)

    Article  ADS  Google Scholar 

  39. D. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013)

    Article  ADS  Google Scholar 

  40. B.J.B. Crowley, High Energy Density Phys. 13, 84 (2014)

    Article  ADS  Google Scholar 

  41. S.K. Son et al., Phys. Rev. X 4, 031004 (2014)

    Google Scholar 

  42. C.A. Iglesias, High Energy Density Phys. 12, 5 (2014)

    Article  ADS  Google Scholar 

  43. A. Bar-Shalom, M. Klapisch, J. Oreg, J. Quant. Spectrosc. Radiat. Transfer 71, 169 (2001)

    Article  ADS  Google Scholar 

  44. M.F. Gu, Astrophys. J. 590, 1131 (2003)

    Article  ADS  Google Scholar 

  45. M.H. Chen et al., Phys. Rev. A 19, 2253 (1979)

    Article  ADS  Google Scholar 

  46. D.A. Liberman et al., Phys. Rev. A 50, 171 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  47. S.M. Vinko et al., Nature 482, 59–62 (2012)

    Article  ADS  Google Scholar 

  48. H.-K. Chung, M.H. Chen, R.W. Lee, High Energy Density Phys. 3, 57–64 (2007)

    Article  ADS  Google Scholar 

  49. K.B. Fournier et al., Phys. Rev. A 54, 3870 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-K. Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, HK., Hansen, S.B., Scott, H.A. (2016). Generalized Collisional Radiative Model Using Screened Hydrogenic Levels. In: Ralchenko, Y. (eds) Modern Methods in Collisional-Radiative Modeling of Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-27514-7_3

Download citation

Publish with us

Policies and ethics