Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle

  • Gayle SmytheEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 900)


Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle.


Angiogenesis Vascular endothelial growth factor Cytokine Skeletal muscle Myogenesis Hypertrophy 


  1. Abou-Khalil R, Le Grand F, Pallafacchina G et al (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011PubMedGoogle Scholar
  3. Amir R, Ben-Sira D, Sagiv M (2007) IGF-I and FGF-2 responses to wingate anaerobic test in older men. J Sports Sci Med 6:227–232PubMedPubMedCentralGoogle Scholar
  4. Andersen P, Henriksson J (1977) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol 270:677–690PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arany Z, Foo SY, Ma Y et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012PubMedCrossRefGoogle Scholar
  6. Arsic N, Zacchigna S, Zentilin L et al (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10:844–854PubMedCrossRefGoogle Scholar
  7. Asai J, Takenaka H, Kusano KF, et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113: 2413–2424Google Scholar
  8. Audet GN, Fulks D, Stricker JC et al (2013) Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice. PLoS One 8, e55953PubMedPubMedCentralCrossRefGoogle Scholar
  9. Banfi A, von Degenfeld G, Gianni-Barrera R et al (2012) Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. FASEB J 26:2486–2497PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beckman SA, Chen WC, Tang Y (2013) Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 33:2004–2012PubMedCrossRefGoogle Scholar
  11. Bertolino P, Deckers M, Lebrin F et al (2005) Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 128(6 Suppl):585S–590SPubMedCrossRefGoogle Scholar
  12. Best TM, Gharaibeh B, Huard J (2013) Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Postgrad Med J 89:666–670PubMedCrossRefGoogle Scholar
  13. Borselli C, Storrie H, Benesch-Lee F et al (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107:3287–3292PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouis D, Kusumanto Y, Meijer C et al (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53:89–103PubMedCrossRefGoogle Scholar
  15. Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810PubMedCrossRefGoogle Scholar
  16. Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023PubMedPubMedCentralCrossRefGoogle Scholar
  17. Buford TW, MacNeil RG, Clough LG et al (2012) Active muscle regeneration following eccentric contraction-induced injury is similar between healthy young and older adults. J Appl Physiol. doi: 10.1152/japplphysiol.01350.2012 PubMedGoogle Scholar
  18. Byrne A, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794PubMedCrossRefGoogle Scholar
  19. Carlson ME, Conboy MJ, Hsu M et al (2009a) Relative roles of TGF-β1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8:676–689PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carlson ME, Suetta C, Conboy MJ et al (2009b) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1:381–391PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395PubMedCrossRefGoogle Scholar
  22. Carosio S, Berardinelli MG, Aucello M et al (2011) Impact of ageing on muscle cell regeneration. Ageing Res Rev 10:35–42PubMedCrossRefGoogle Scholar
  23. Carter JG, Cherry J, Williams K et al (2011) Splicing factor polymorphisms, the control of VEGF isoforms and association with angiogenic eye diseases. Curr Eye Res 36:328–335PubMedCrossRefGoogle Scholar
  24. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen C, Xu Y, Song Y (2014) IGF-1 gene-modified muscle-derived stem cells are resistant to oxidative stress via enhanced activation of IGF-1R/PI3K/Akt signaling and secretion of VEGF. Mol Cell Biochem 386:167–175PubMedCrossRefGoogle Scholar
  26. Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A 106:21401–21406PubMedPubMedCentralCrossRefGoogle Scholar
  27. Clarke JM, Hurwitz HI (2013) Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther 13:1187–1196PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cowey CL (2013) Profile of tivozanib and its potential for the treatment of advanced renal cell carcinoma. Drug Des Dev Ther 7:519–527CrossRefGoogle Scholar
  29. Dallabrida SM, Ismail N, Oberle JR et al (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96:e8–e24PubMedCrossRefGoogle Scholar
  30. De Spiegelaere W, Casteleyn C, Van den Broeck W et al (2012) Intussusceptive angiogenesis: A biologically relevant form of angiogenesis. J Vasc Res 49:390–404PubMedCrossRefGoogle Scholar
  31. Deasy BM, Feduska JM, Payne TR (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17:1788–1798PubMedPubMedCentralCrossRefGoogle Scholar
  32. Delavar H, Nogueira L, Wagner PD et al (2014) Skeletal myofiber VEGF is essential for the exercise training response in adult mice. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00522.2013 PubMedPubMedCentralGoogle Scholar
  33. Delloye-Bourgeois C, Gibert B, Rama N (2013) Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. PLoS Biol 11(8), e1001623PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duprez D, Fournier-Thibault C, Le Douarin N (1998) Sonic hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125:495–505PubMedGoogle Scholar
  35. Elia D, Madhala D, Ardon E et al (2007) Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1773:1438–1446PubMedCrossRefGoogle Scholar
  36. Ennen JP, Verma M, Asakura A (2013) Vascular-targeted therapies for Duchenne muscular dystrophy. Skel Muscle 3: doi:  10.1186/2044-5040-3-9
  37. Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26PubMedCrossRefGoogle Scholar
  38. Flann KL, Rathbone CR, Cole LC et al (2014) Hypoxia simultaneously alters satellite cell-mediated angiogenesis and hepatocyte growth factor expression. J Cell Physiol 229:572–579PubMedCrossRefGoogle Scholar
  39. Folkman J, Klagsbrun M, Sasse J et al (1988) A heparin-binding angiogenic protein, basic fibroblast growth factor, is stored within basement membrane. Am J Pathol 130:393–400PubMedPubMedCentralGoogle Scholar
  40. Foster H, Popplewell L, Dickson G (2012) Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 23:676–687PubMedCrossRefGoogle Scholar
  41. Frey SP, Jansen H, Raschke MJ et al (2012) VEGF improves skeletal muscle regeneration after acute trauma and reconstruction of the limb in a rabbit model. Clin Orthop Relat Res 470:3607–3614PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fujii T, Kuwano (2010) Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF2. In Vitro Cell Dev Biol Anim 46: 487–491.Google Scholar
  43. Gavin TP, Westerkamp LM, Zwetsloot KA (2006) Soleus, plantaris and gastrocnemius VEGF mRNA responses to hypoxia and exercise are preserved in aged compared with young female C56BL/6 mice. Acta Physiol (Oxf) 188:113–121CrossRefGoogle Scholar
  44. Gavin TP, Ruster RS, Carrithers JA et al (2007) No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol 585:231–239PubMedPubMedCentralCrossRefGoogle Scholar
  45. Giacca M, Zacchiagna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629PubMedCrossRefGoogle Scholar
  46. Gianni-Barrera R, Trani M, Reginato S et al (2011) To sprout or split? VEGF, Notch and vascular morphogenesis. Biochem Soc Trans 39:1644–1648PubMedCrossRefGoogle Scholar
  47. Gianni-Barrera R, Trani M, Reginato S et al (2013) VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis 16:123–136PubMedCrossRefGoogle Scholar
  48. Gorman JL, Liu STK, Slopack D et al (2014) Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 9, e85537PubMedPubMedCentralCrossRefGoogle Scholar
  49. Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854:78–91PubMedCrossRefGoogle Scholar
  50. Gustafsson MK, Kraus WE (2001) Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle and their modification in muscle pathology. Front Biosci 6:D75–D89PubMedCrossRefGoogle Scholar
  51. Gustafsson T, Puntschart A, Kaijser L et al (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol Heart Circ Physiol 45:H679–H685Google Scholar
  52. Gustafsson MK, Pan H, Pinney DF et al (2002) Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 16:114–126PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gustafsson T, Runqvist H, Norrbom J et al (2007) The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle. J Appl Physiol 103:1012–1020PubMedCrossRefGoogle Scholar
  54. Heikura T, Nieminen T, Roschier MM et al (2012) Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J Gene Med 14:35–43PubMedCrossRefGoogle Scholar
  55. Hoffner L, Nielsen JJ, Langberg H (2003) Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in the human skeletal muscle interstitium. J Physiol 550:217–225PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hoier B, Hellsten Y (2014) Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. doi: 10.1111/micc.12117 PubMedGoogle Scholar
  57. Hoier B, Rufener N, Bjosen-Moller J (2010) The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol 588:3833–3845PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hoier B, Nordsborg N, Andersen S (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590:595–606PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hoier B, Prats C, Qvortrup K et al (2013) Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J 27:3496–3504PubMedCrossRefGoogle Scholar
  60. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMedCrossRefGoogle Scholar
  61. Hudlicka O (1990) The response of muscle to enhanced and reduced activity. Baillieres Clin Endocrinol Metab 4:417–439PubMedCrossRefGoogle Scholar
  62. Huttemann M, Lee I, Malek MH (2012) (−)-Epicatechin maintains endurance training adaptation in mice after 14 days of detraining. FASEB J 26:1413–1422PubMedPubMedCentralCrossRefGoogle Scholar
  63. Huttemann M, Lee I, Perkins GA (2013) (−)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clin Sci (Lond) 124:663–674CrossRefGoogle Scholar
  64. Iruela-Arispe ML, Bornstein P, Sage H (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci U S A 88:5026–5030PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jakobsson L, van Meeteren LA (2013) Transforming growth factor β family members in regulation of vascular function: In the light of vascular conditional knockouts. Exp Cell Res 319:1264–1270PubMedCrossRefGoogle Scholar
  66. Jarvinen TA, Jarvinen M, Kalimo H (2014) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons 3:337–345Google Scholar
  67. Johnson C, Sung HJ, Lessner SM et al (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94:262–268PubMedCrossRefGoogle Scholar
  68. Kasemkijwattana C, Menetrey J, Bosch P et al (2000) Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res 370:272–282PubMedCrossRefGoogle Scholar
  69. Katoh M (2013) Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signalling networks (review). Int J Mol Med 32:763–767PubMedPubMedCentralGoogle Scholar
  70. Klingler W, Jurkatt-Rott K, Lehmann-Horn F et al (2012) The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 31:184–195PubMedPubMedCentralGoogle Scholar
  71. Koleva M, Kappler R, Vogler M (2005) Pleiotropic effects of sonic hedgehog on muscle satellite cells. Cell Mol Life Sci 62:1863–1870PubMedCrossRefGoogle Scholar
  72. Kuwahara G, Nishinakamura H, Kojima D (2013) Vascular endothelial growth factor-C derived from CD11b + cells induces therapeutic improvements in a murine model of hind limb ischemia. J Vasc Surg 57:1090–1099PubMedCrossRefGoogle Scholar
  73. Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med 2:a006627PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li Y, Foster W, Deasy BM et al (2004) Transforming growth factor beta-1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lieu C, Heymach J, Overman M et al (2011) Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139PubMedCrossRefGoogle Scholar
  76. Lloyd PG, Prior BM, Yang HT et al (2003) Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 284:H1668–H1678PubMedCrossRefGoogle Scholar
  77. Long J, Wang S, Zhang Y, Liu X, Zhang H, Wang S (2013) The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. J Vasc Surg 58:756–765PubMedCrossRefGoogle Scholar
  78. Ma J, Xue Y, Cui W et al (2012) Ras homolog gene family, member A promotes p53 degradation and vascular endothelial growth factor-dependent angiogenesis through an interaction with murine double minute 2 under hypoxic conditions. Cancer 118:105–116CrossRefGoogle Scholar
  79. Maclauchlan S, Skokos EA, Agah A et al (2009) Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and −9, and soluble VEGF. J Histochem Cytochem 57:301–313PubMedPubMedCentralCrossRefGoogle Scholar
  80. Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106:1375–1384PubMedCrossRefGoogle Scholar
  81. Makarevich P, Tsokolaeva Z, Shevelev A et al (2012) Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 7, e38776PubMedPubMedCentralCrossRefGoogle Scholar
  82. Malek MH, Olfert IM (2009) Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol 94:749–760PubMedCrossRefGoogle Scholar
  83. Malek MH, Huttemann M, Lee I et al (2013) Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training. Exp Physiol 98:807–818PubMedCrossRefGoogle Scholar
  84. Maves L, Waskiewicz AJ, Paul B et al (2007) Pbx homeodomain proteins direct MyoD activity to promote fast-muscle differentiation. Development 134:3371–3382PubMedCrossRefGoogle Scholar
  85. Messina S, Mazzeo A, Bitto A et al (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21:3737–3746PubMedCrossRefGoogle Scholar
  86. Mitchell CA, McGeachie JK, Grounds MD (1996) The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 13:37–55PubMedCrossRefGoogle Scholar
  87. Mofarrahi M, Hussain SN (2011) Expression and functional roles of angiopoietin-2 in skeletal muscles. PLoS One 6, e22882PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mu X, Urso ML, Murray K (2010) Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol 177:2399–2410PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mujagic E, Gianni-Barrera R, Trani M (2013) Induction of aberrant vascular growth, but not of normal angiogenesis, by cell-based expression of different doses of human and mouse VEGF is species-dependent. Hum Gene Ther Methods 24:28–37PubMedPubMedCentralCrossRefGoogle Scholar
  90. Negishi S, Li Y, Usas A et al (2005) The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 33:1816–1823PubMedCrossRefGoogle Scholar
  91. Nico B, Frigeri A, Nicchia GP et al (2003) Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42:235–251PubMedCrossRefGoogle Scholar
  92. Nowak DG, Woolard J, Amin EM et al (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495PubMedPubMedCentralCrossRefGoogle Scholar
  93. Olenich SA, Gutierrez-Reed N, Audet GN et al (2013) Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice. J Physiol 591:5157–5169PubMedPubMedCentralCrossRefGoogle Scholar
  94. Olfert IM, Breen EC, Gavin TP et al (2006) Temporal thormbospondin-1 mRNA response to skeletal muscle exposed to acute and chronic exercise. Growth Factors 24:253–259PubMedCrossRefGoogle Scholar
  95. Olofsson B, Pajusola K, Kaipainen A et al (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581PubMedPubMedCentralCrossRefGoogle Scholar
  96. Orlova VV, Liu Z, Goumans MJ et al (2011) Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol 26:1219–1230PubMedGoogle Scholar
  97. Palladino M, Gatto I, Neri V et al (2011) Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia. Mol Ther 19:658–666PubMedPubMedCentralCrossRefGoogle Scholar
  98. Palladino M, Gatto I, Neri V et al (2012) Combined therapy with sonic hedgehog gene transfer and bone marrow-derived endothelial progenitor cells enhances angiogenesis and myogenesis in the ischemic skeletal muscle. J Vasc Res 49:425–431PubMedCrossRefGoogle Scholar
  99. Palladino M, Gatto I, Neri V et al (2013) Angiogenic impairment of the vascular endothelium: A novel mechanism and potential therapeutic target in muscular dystrophy. Arterioscler Thromb Vasc Biol 33:2867–2876PubMedCrossRefGoogle Scholar
  100. Pepper MS, Belin D, Montesano R et al (1990) Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755PubMedCrossRefGoogle Scholar
  101. Pepper MS, Vassalli JD, Orci L et al (1993) Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp Cell Res 204:356–363PubMedCrossRefGoogle Scholar
  102. Piccioni A, Gaetani E, Palladino M et al (2014a) Sonic hedgehog gene therapy increases the ability of dystrophic skeletal muscle to regenerate after injury. Gene Ther. doi: 10.1038/gt.2014.13 PubMedCentralGoogle Scholar
  103. Piccioni A, Gaetani E, Neri V et al (2014b) Sonic hedgehog therapy in a mouse model of age-associated impairment of skeletal muscle regeneration. J Gerontol A Biol Sci Med Sci 69:245–252PubMedCrossRefGoogle Scholar
  104. Pola R, Ling LE, Silver M et al (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711PubMedCrossRefGoogle Scholar
  105. Pola R, Ling LE, Aprahamian TR et al (2003) Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108:479–485PubMedCrossRefGoogle Scholar
  106. Qin D, Trenkwalder T, Lees S et al (2013) Early vessel destabilization mediated by angiopoeitin-2 and subsequent vessel maturation via angiopoeitin-1 induce functional neovasculature after ischemia. PLoS One 8, e61831PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rajurkar M, Huang H, Cotton JL et al (2013) Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene. doi: 10.1038/onc.2013.480 PubMedPubMedCentralGoogle Scholar
  108. Renault MA, Roncalli J, Tongers J et al (2010) Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol 49:490–498PubMedPubMedCentralCrossRefGoogle Scholar
  109. Renault MA, Chapouly C, Yao Q et al (2013a) Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival. Circ Res 112:762–770PubMedCrossRefGoogle Scholar
  110. Renault MA, Robbesyn F, Chapouly C et al (2013b) Hedgehog-dependent regulation of angiogenesis and myogenesis is impaired in aged mice. Arterioscler Thromb Vasc Biol 33:2858–2866PubMedCrossRefGoogle Scholar
  111. Rhoads RP, Flann KL, Cardinal TR et al (2013) Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem Biophys Res Commun 440:399–404PubMedCrossRefGoogle Scholar
  112. Rissanen TT, Vajanto I, Hiltunen MO et al (2002) Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160:1393–1403PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rissanen TT, Markkanen JE, Gruchala M et al (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106PubMedCrossRefGoogle Scholar
  114. Rivilis I, Milkiewicz M, Boyd P et al (2002) Differential involvement of MMP-2 and VEGF in muscle stretch- versus shear-stress induced angiogenesis. Am J Physiol Heart Circ Physiol 283:H1430–H1438PubMedCrossRefGoogle Scholar
  115. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rodino-Klapac LR, Mendell JR, Sahenk Z (2013) Update on the treatment of Duchenne muscular dystrophy. Curr Neurol Neurosci Rep 13. doi: 10.1007/s11910-012-0332-1
  117. Roudier E, Forn P, Perry ME et al (2012) Murine double minute-2 expression is required for capillary maintenance and exercise-induced angiogenesis in skeletal muscle. FASEB J 26:4530–4539PubMedPubMedCentralCrossRefGoogle Scholar
  118. Roudier E, Milkiewicz M, Birot O et al (2013) Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle. Angiogenesis 16:759–772PubMedCrossRefGoogle Scholar
  119. Sacks LD, Cann GM, Nikovits W Jr et al (2003) Regulation of myosin expression during myotome formation. Development 130:3391–3402PubMedCrossRefGoogle Scholar
  120. Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41:278–286Google Scholar
  121. Shimada T, Takeshita Y, Murohara T et al (2004) Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation 110:1148–1155PubMedCrossRefGoogle Scholar
  122. Shimizu-Motohashi Y, Askaura A (2014) Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol 5. doi:  10.3389/fphys.2014.00050.
  123. Smythe GM, Lai MC, Grounds MD et al (2002) Adeno-associated virus-mediated vascular endothelial growth factor gene therapy in skeletal muscle before transplantation promotes revascularization of regenerating muscle. Tissue Eng 8:879–891PubMedCrossRefGoogle Scholar
  124. Smythe GM, Shavlakadze T, Roberts P et al (2008) Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13–21 months) mice. Exp Gerontol 43:550–562PubMedCrossRefGoogle Scholar
  125. Straface G, Aprahamian T, Flex A et al (2009) Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med 13:2424–2435PubMedPubMedCentralCrossRefGoogle Scholar
  126. Stratos I, Madry H, Rotter R et al (2011) Fibroblast growth factor-2-overexpressing myoblasts encapsulated in alginate spheres increase proliferation, reduce apoptosis, induce adipogenesis, and enhance regeneration following skeletal muscle injury in rats. Tissue Eng Part A 17:2867–2877PubMedCrossRefGoogle Scholar
  127. Tepekoylu C, Wang FS, Kozaryn R et al (2013) Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: implications for angiogenesis and vasculogenesis. J Thorac Cardiovasc Surg 146:971–978PubMedCrossRefGoogle Scholar
  128. Terada S, Ota S, Kobayashi M et al (2013) Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 95:980–988PubMedCrossRefGoogle Scholar
  129. Tesch PA, Thorsson A, Kaiser P (1984) Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol 56:35–38PubMedGoogle Scholar
  130. Uezumi A, Ikemoto-Uezumi M, Tsuchida K (2014) Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front Physiol. doi:  10.3389/fphys.2014.00068
  131. Unemori EN, Lewis M, Constant J et al (2000) Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen 8:361–370PubMedCrossRefGoogle Scholar
  132. Villavivicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054CrossRefGoogle Scholar
  133. Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A 99:8219–8224PubMedPubMedCentralCrossRefGoogle Scholar
  134. Vlodavsky I, Folkman J, Sullivan R et al (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A 84:2292–2296PubMedPubMedCentralCrossRefGoogle Scholar
  135. Volpi N, Pecorelli A, Lorenzoni P et al (2013) Antiangiogenic VEGF isoform in inflammatory myopathies. Mediators Inflamm. doi: 10.1155/2013/219313 PubMedPubMedCentralGoogle Scholar
  136. Wagatsuma A (2006) Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol 41:49–54PubMedCrossRefGoogle Scholar
  137. Wagatsuma A (2007) Endogenous expression of angiogenesis-related factors in response to muscle injury. Mol Cell Biochem 298:151–159PubMedCrossRefGoogle Scholar
  138. Wagatsuma A (2008) Effect of hindlimb unweighting on expression of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, angiopoietin, and their receptors in mouse skeletal muscle. Physiol Res 57:613–620PubMedGoogle Scholar
  139. Wagatsuma A, Tamaki H, Ogita F (2005) Capillary supply and gene expression of angiogenesis-related factors in murine skeletal muscle following denervation. Exp Physiol 90:403–409PubMedCrossRefGoogle Scholar
  140. Wagner PD (2011) The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochem Soc Trans 39:1556–1559PubMedCrossRefGoogle Scholar
  141. Wallace MA, Hock MB, Hazen BC et al (2011) Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 589:2027–2039PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wang JS, Liu X, Xue ZY et al (2011) Effects of aging on time course of neovascularisation-related gene expression following acute hindlimb ischemia in mice. Chin Med J 124:1075–1081PubMedGoogle Scholar
  143. Wang H, Lisrat A, Meunier B et al (2013) Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell. doi: 10.1111/acel.12169 Google Scholar
  144. Xiong J, Yang Q, Li J et al (2014) Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer. Angiogenesis 17:37–50PubMedCrossRefGoogle Scholar
  145. Ye L, Haider HK, Esa WB et al (2010) Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease. J Cell Mol Med 14:323–336PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhao M, Shi X, Liang J et al (2011) Expression of pro- and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy. Exp Eye Res 93:921–926PubMedCrossRefGoogle Scholar
  147. Zhao T, Zhao W, Meng W et al (2014) Vascular endothelial growth factor-C: Its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00559.2013 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of ScienceCharles Sturt UniversityAlburyAustralia

Personalised recommendations