Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth

  • Yan SongEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 900)


Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development.


Cytokine Growth factor Proteoglycan Satellite cell Skeletal muscle 



constant region 1


constant region 2


extracellular matrix


fibroblast growth factor


fibroblast growth factor 2


fibroblast growth factor receptor






hepatocyte growth factor


heparan sulfate proteoglycan


insulin-like growth factor


insulin-like growth factor-I


insulin-like growth factor-II




leukemia inhibitory factor


mitogen-activated protein

N-glycosylated chain

N-linked glycosylated chain


phosphatidylinositol 4, 5-bisphosphate


protein kinase C


protein kinase C alpha


transforming growth factor


transforming growth factor-beta


transforming growth factor-beta 1


transforming growth factor-beta 2


tumor necrosis factor-alpha


variable region


vascular endothelial growth factor


  1. Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, Landegren U, Kjellén L, Bondjers G, Li JP, Lindahl U, Spillmann D, Betsholtz C, Gerhardt H (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21:316–331PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516PubMedGoogle Scholar
  3. Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722PubMedGoogle Scholar
  4. Al-Khalili L, Bouzakri K, Glund S, Lönnqvist F, Koistinen HA, Krook A (2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 20:3364–3375PubMedCrossRefGoogle Scholar
  5. Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133:567–572PubMedCrossRefGoogle Scholar
  6. Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315PubMedCrossRefGoogle Scholar
  7. Allen RE, Dodson MV, Luiten LS (1984) Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp Cell Res 152:154–160PubMedCrossRefGoogle Scholar
  8. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312PubMedCrossRefGoogle Scholar
  9. Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation. J Cell Biol 137:1057–1068PubMedPubMedCentralCrossRefGoogle Scholar
  10. Andres J, DeFalcis D, Noda M, Massagué J (1992) Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J Biol Chem 267:5927–5930PubMedGoogle Scholar
  11. Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181PubMedGoogle Scholar
  12. Arribas J, Borroto A (2002) Protein ectodomain shedding. Chem Rev 102:4627–4638PubMedCrossRefGoogle Scholar
  13. Arrington CB, Yost HJ (2009) Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136:3143–3152PubMedPubMedCentralCrossRefGoogle Scholar
  14. Athanassiades A, Lala PK (1998) Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta 19:465–473PubMedCrossRefGoogle Scholar
  15. Austin L, Bower J, Kurek J, Vakakis N (1992) Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J Neurol Sci 112:185–191PubMedCrossRefGoogle Scholar
  16. Austin L, Bower JJ, Bennett TM, Lynch GS, Kapsa R, White JD, Barnard W, Gregorevic P, Byrne E (2000) Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve 23:1700–1705PubMedCrossRefGoogle Scholar
  17. Baeza-Raja B, Muñoz-Cánoves P (2004) p38 MAPK-induced nuclear factor-κB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell 15:2013–2026PubMedPubMedCentralCrossRefGoogle Scholar
  18. Barnard W, Bower J, Brown MA, Murphy M, Austin L (1994) Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses lif mRNA. J Neurol Sci 123:108–113PubMedCrossRefGoogle Scholar
  19. Beekman JM, Coffer PJ (2008) The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 121:1349–1355PubMedCrossRefGoogle Scholar
  20. Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B, Stamenkovic I, Plowman G, Aruffo A (1995) CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 128:687–698PubMedCrossRefGoogle Scholar
  21. Bentzinger CF, von Maltzahn J, Rudnicki MA (2010) Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 1:27PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRefGoogle Scholar
  23. Besson A, Yong VW (2000) Involvement of p21(Waf1/Cip1) in protein kinase C alpha-induced cell cycle progression. Mol Cell Biol 20:4580–4590PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bischoff R (1990a) Control of satellite cell proliferation. Adv Exp Med Biol 280:147–158PubMedCrossRefGoogle Scholar
  25. Bischoff R (1990b) Interaction between satellite cells and skeletal muscle fibers. Development 109:943–952PubMedGoogle Scholar
  26. Blobe GC, Liu X, Fang SJ, How T, Lodish HF (2001) A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein. GIPC J Biol Chem 276:39608–39617PubMedCrossRefGoogle Scholar
  27. Bode L, Salvestrini C, Park PW, Li JP, Esko JD, Yamaguchi Y, Murch S, Freeze HH (2008) Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest 118:229–238PubMedPubMedCentralCrossRefGoogle Scholar
  28. Borghesi LA, Yamashita Y, Kincade PW (1999) Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis. Blood 93:140–148PubMedGoogle Scholar
  29. Boukerche H, Su ZZ, Prévot C, Sarkar D, Fisher PB (2008) mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci U S A 105:15914–15919PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bourguignon LY, Zhu H, Shao L, Chen YW (2001) CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276:7327–7336PubMedCrossRefGoogle Scholar
  31. Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, Lynch L, Karpen JW, Brown RL, Martens JR (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol 65:503–511PubMedCrossRefGoogle Scholar
  32. Brandan E, Larraín J (1998) Heparan sulfate proteoglycans during terminal skeletal muscle differentiation: possible functions and regulation of their expression. Basic Appl Myol 8:107–113Google Scholar
  33. Brandan E, Carey DJ, Larraín J, Melo F, Compso A (1996) Synthesis and processing of glypican during differentiation of skeletal muscle cells. Eur J Cell Biol 71:170–176PubMedGoogle Scholar
  34. Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B, Pedersen BK (2008) Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 586:2195–2201PubMedPubMedCentralCrossRefGoogle Scholar
  35. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136PubMedCrossRefGoogle Scholar
  36. Brown TA, Bouchard T, St John T, Wayner E, Carter WG (1991) Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 113:207–221PubMedCrossRefGoogle Scholar
  37. Bryan BA, Walshe TE, Mitchell DC, Havumaki JS, Saint-Geniez M, Maharaj AS, Maldonado AE, D’Amore PA (2008) Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell 19:994–1006PubMedPubMedCentralCrossRefGoogle Scholar
  38. Buckingham ME (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532PubMedCrossRefGoogle Scholar
  39. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518PubMedCrossRefGoogle Scholar
  40. Bussini S, Meda L, Scarpini E, Clementi E, Conti G, Tiriticco M, Bresolin N, Baron P (2005) Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. Immun Ageing 16:2–11Google Scholar
  41. Campos A, Nunez R, Koenig CS, Carey DJ, Brandan E (1993) A lipid anchored heparan sulfate proteoglycan is present in the surface of differentiated skeletal muscle cells. Isolation and biochemical characterization. Eur J Biochem 216:587–595PubMedCrossRefGoogle Scholar
  42. Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256:C1262–C1266PubMedGoogle Scholar
  43. Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW (2000) Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J Biol Chem 275:35942–35952PubMedCrossRefGoogle Scholar
  44. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238PubMedCrossRefGoogle Scholar
  45. Chen JCJ, Goldhamer DJ (2003) Skeletal muscle stem cells. Reprod Biol Endocrinol 1:101–107PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chen E, Hermanson S, Ekker SC (2002) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103:1710–1719CrossRefGoogle Scholar
  47. Chen L, Klass C, Woods A (2004) Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem 279:15715–15718PubMedCrossRefGoogle Scholar
  48. Chen CL, Huang SS, Huang JS (2006) Cellular heparan sulfate negatively modulates transforming growth factor-beta1 (TGF-beta1) responsiveness in epithelial cells. J Biol Chem 281:11506–11514PubMedCrossRefGoogle Scholar
  49. Chernousov MA, Carey DJ (1993) N-syndecan (syndecan 3) from neonatal rat brain binds basic fibroblast growth factor. J Biol Chem 268:16810–16814PubMedGoogle Scholar
  50. Choi Y, Chung H, Jung H, Couchman JR, Oh ES (2011) Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol 30:93–99PubMedCrossRefGoogle Scholar
  51. Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396CrossRefGoogle Scholar
  52. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239PubMedCrossRefGoogle Scholar
  53. Clarke D, Katoh O, Gibbs RV, Griffiths SD, Gordon MY (1995) Interaction of interleukin 7 (IL-7) with glycosaminoglycans and its biological relevance. Cytokine 7:325–333PubMedCrossRefGoogle Scholar
  54. Clayton A, Thomas J, Thomas GJ, Davies M, Steadman R (2001) Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney Int 59:2084–2094PubMedCrossRefGoogle Scholar
  55. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  56. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283PubMedCrossRefGoogle Scholar
  57. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94PubMedCrossRefGoogle Scholar
  58. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for syndecan-3 and syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236PubMedPubMedCentralCrossRefGoogle Scholar
  59. Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150PubMedCrossRefGoogle Scholar
  60. Deepa SS, Yamada S, Zako M, Goldberger O, Sugahara K (2004) Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J Biol Chem 279:37368–37376PubMedCrossRefGoogle Scholar
  61. Delafontaine P, Song YH, Li Y (2004) Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 24:435–444PubMedCrossRefGoogle Scholar
  62. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410PubMedCrossRefGoogle Scholar
  63. Desgranges P, Barbaud C, Caruelle JP, Barritault D, Gautron J (1999) A substituted dextran enhances muscle fiber survival and regeneration in ischemic and denervated rat EDL muscle. FASEB J 13:761–766PubMedGoogle Scholar
  64. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673PubMedCrossRefGoogle Scholar
  65. DiMario J, Strohman RC (1988) Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation 39:42–49PubMedCrossRefGoogle Scholar
  66. Dollenmeier P, Turner DC, Eppenberger HM (1981) Proliferation and differentiation of chick skeletal muscle cells cultured in a chemically defined medium. Exp Cell Res 135:47–61PubMedCrossRefGoogle Scholar
  67. Dovas A, Yoneda A, Couchman JR (2006) PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci 119:2837–2846PubMedCrossRefGoogle Scholar
  68. Ebisui C, Tsujinaka T, Morimoto T, Kan K, Iijima S, Yano M, Kominami E, Tanaka K, Monden M (1995) Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2C12 myotubes. Clin Sci (Lond) 89:431–439CrossRefGoogle Scholar
  69. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14PubMedPubMedCentralCrossRefGoogle Scholar
  70. Eickelberg O, Centrella M, Reiss M, Kashgarian M, Wells RG (2002) Betaglycan inhibits TGF-beta signaling by preventing type I-type II receptor complex formation. Glycosaminoglycan modifications alter betaglycan function. J Biol Chem 277:823–829PubMedCrossRefGoogle Scholar
  71. Elenius K, Vainio S, Laato M, Salmivirta M, Thesleff I, Jalkanen M (1991) Induced expression of syndecan in healing wounds. J Cell Biol 114:585–595PubMedCrossRefGoogle Scholar
  72. Elenius K, Määttä A, Salmivirta M, Jalkanen M (1992) Growth factors induce 3 T3 cells to express bFGF-binding syndecan. J Biol Chem 25:6435–6441Google Scholar
  73. Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135:431–440PubMedCrossRefGoogle Scholar
  74. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  75. Essner JJ, Chen E, Ekker SC (2006) Syndecan-2. Int J Biochem Cell Biol 38:152–156PubMedCrossRefGoogle Scholar
  76. Fears CY, Gladson CL, Woods A (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281:14533–14536PubMedCrossRefGoogle Scholar
  77. Filla M, Dam P, Rapraeger AC (1998) The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J Cell Physiol 174:310–321PubMedCrossRefGoogle Scholar
  78. Florini JR, Magri KA (1989) Effects of growth factors on myogenic differentiation. Am J Physiol 256:C701–C711PubMedGoogle Scholar
  79. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517PubMedGoogle Scholar
  80. Froesch ER, Zapf J (1985) Insulin-like growth factors and insulin: comparative aspects. Diabetologia 28:485–493PubMedCrossRefGoogle Scholar
  81. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778PubMedCrossRefGoogle Scholar
  82. Fuentealba L, Carey DJ, Brandan E (1999) Antisense inhibition of syndecan-3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor-dependent mechanism. J Biol Chem 274:37876–37884PubMedCrossRefGoogle Scholar
  83. Galandrini R, Galluzzo E, Albi N, Grossi CE, Velardi A (1994) Hyaluronate is costimulatory for human T cell effector functions and binds to CD44 on activated T cells. J Immunol 153:21–31PubMedGoogle Scholar
  84. Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108:357–361PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gallagher JT, Lyon M (2000) Molecular structure of heparan sulfate and interactions with growth factors and morphogens. In: Iozzo MV (ed) Proteoglycans: structure, biology and molecular interactions. Marcel Dekker, New York, pp 27–59Google Scholar
  86. Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402:39–51PubMedCrossRefGoogle Scholar
  87. Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM (1993) Acute treatment with tumour necrosis factor-α induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem 125:11–18PubMedCrossRefGoogle Scholar
  88. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267:6093–6098PubMedGoogle Scholar
  89. Gonzatti-Haces M, Seth A, Park M, Copeland T, Oroszlan S, Vande Woude GF (1988) Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci U S A 85:21–25PubMedPubMedCentralCrossRefGoogle Scholar
  90. Gopal S, Bober A, Whiteford JR, Multhaupt HA, Yoneda A, Couchman JR (2010) Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem 285:14247–14258PubMedPubMedCentralCrossRefGoogle Scholar
  91. Greene EA, Allen RE (1991) Growth factor regulation of bovine satellite cell growth in vitro. J Anim Sci 69:146–152PubMedGoogle Scholar
  92. Grimme HU, Termeer CC, Bennett KL, Weiss JM, Schöpf E, Aruffo A, Simon JC (1999) Colocalization of basic fibroblast growth factor and CD44 isoforms containing the variably spliced exon v3 (CD44v3) in normal skin and in epidermal skin cancers. Br J Dermatol 141:824–832PubMedCrossRefGoogle Scholar
  93. Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882PubMedCrossRefGoogle Scholar
  94. Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958PubMedCrossRefGoogle Scholar
  95. Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, Ginty DD, Kolodkin AL (2002) Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem 277:18069–18076PubMedCrossRefGoogle Scholar
  96. Gutiérrez J, Brandan E (2010) A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 30:1634–1649PubMedPubMedCentralCrossRefGoogle Scholar
  97. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS (2000) NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366PubMedCrossRefGoogle Scholar
  98. Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. FASEB J 6:861–870PubMedGoogle Scholar
  99. Harrington EO, Loffler J, Nelson PR, Kent KC, Simons M, Ware JA (1997) Enhancement of migration by protein kinase C alpha and inhibition of proliferation and cell cycle progression by protein kinase C delta in capillary endothelial cells. J Biol Chem 272:7390–7397PubMedCrossRefGoogle Scholar
  100. Hartmann G, Prospero T, Brinkmann V, Ozcelik C, Winter G, Hepple J, Batley S, Bladt F, Sachs M, Birchmeier C, Birchmeier W, Gherardi E (1998) Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr Biol 8:125–134PubMedCrossRefGoogle Scholar
  101. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  102. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–751PubMedCrossRefGoogle Scholar
  103. Herrera-Gayol A, Jothy S (1999) CD44 modulates Hs578T human breast cancer cell adhesion, migration, and invasiveness. Exp Mol Pathol 66:99–108PubMedCrossRefGoogle Scholar
  104. Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302:527–534PubMedPubMedCentralCrossRefGoogle Scholar
  105. Horowitz A, Simons M (1998a) Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase C alpha. J Biol Chem 273:25548–25551PubMedCrossRefGoogle Scholar
  106. Horowitz A, Simons M (1998b) Regulation of syndecan-4 phosphorylation in vivo. J Biol Chem 273:10914–10918PubMedCrossRefGoogle Scholar
  107. Horowitz A, Murakami M, Gao Y, Simons M (1999) Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 38:15871–15877PubMedCrossRefGoogle Scholar
  108. Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A:822–832PubMedGoogle Scholar
  109. Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6:646–656PubMedCrossRefGoogle Scholar
  110. Irie A, Habuchi H, Kimata K, Sanai Y (2003) Heparan sulfate is required for bone morphogenetic protein-7 signaling. Biochem Biophys Res Commun 308:858–865PubMedCrossRefGoogle Scholar
  111. Jemth P, Gianni S (2007) PDZ domains: folding and binding. Biochemistry 46:8701–8708PubMedCrossRefGoogle Scholar
  112. Jeong J, Han I, Lim Y, Kim J, Park I, Woods A, Couchman JR, Oh ES (2001) Rat embryo fibroblasts require both the cell-binding and the heparin-binding domains of fibronectin for survival. Biochem J 356:531–537PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ji SQ, Neustrom S, Willis GM, Spurlock ME (1998) Proinflammatory cytokines regulate myogenic cell proliferation and fusion but have no impact on myotube protein metabolism or stress protein expression. J Interferon Cytokine Res 18:879–888PubMedCrossRefGoogle Scholar
  114. Ji JW, Mac Gabhann F, Popel AS (2007) Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol Heart Circ Physiol 293:H3740–H3749PubMedCrossRefGoogle Scholar
  115. Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, Kim SS, Jo SA (2005) Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta 1743:187–197PubMedCrossRefGoogle Scholar
  116. Jones M, Tussey L, Athanasou N, Jackson DG (2000) Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem 275:7964–7974PubMedCrossRefGoogle Scholar
  117. Kainulainen V, Wang H, Schick C, Bernfield M (1998) Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem 273:11563–11569PubMedCrossRefGoogle Scholar
  118. Kami K, Senba E (1998) Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve 21:819–822PubMedCrossRefGoogle Scholar
  119. Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274:15947–15952PubMedCrossRefGoogle Scholar
  120. Kashyap AS, Hollier BG, Manton KJ, Satyamoorthy K, Leavesley DI, Upton Z (2011) Insulin-like growth factor-I: vitronectin complex-induced changes in gene expression effect breast cell survival and migration. Endocrinology 152:1388–1401PubMedCrossRefGoogle Scholar
  121. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902PubMedGoogle Scholar
  122. Kemp LE, Mulloy B, Gherardi E (2006) Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors. Biochem Soc Trans 34:414–417PubMedCrossRefGoogle Scholar
  123. Kim CW, Goldberger OA, Gallo RL, Bernfield M (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5:797–805PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kishimoto T (2005) IL-6: from laboratory to bedside. Clin Rev Allergy Immunol 28:177–186PubMedCrossRefGoogle Scholar
  125. Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19:995–1005PubMedCrossRefGoogle Scholar
  126. Klass CM, Couchman JR, Woods A (2000) Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci 113:493–506PubMedGoogle Scholar
  127. Kojima T, Shworak NW, Rosenberg RD (1992) Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line. J Biol Chem 267:4870–4877PubMedGoogle Scholar
  128. Kojima T, Katsumi A, Yamazaki T, Muramatsu T, Nagasaka T, Ohsumi K, Saito H (1996) Human ryudocan from endothelium-like cells binds basic fibroblast growth factor, midkine, and tissue factor pathway inhibitor. J Biol Chem 271:5914–5920PubMedCrossRefGoogle Scholar
  129. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762PubMedCrossRefGoogle Scholar
  130. Kolset SO, Pejler G (2011) Serglycin: a structural and functional chameleon with wide impact on immune cells. J Immunol 187:4927–4933PubMedCrossRefGoogle Scholar
  131. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  132. Kramer KL, Yost HJ (2002) Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2:115–124PubMedCrossRefGoogle Scholar
  133. Kricker JA, Towne CL, Firth SM, Herington AC, Upton Z (2003) Structural and functional evidence for the interaction of insulin-like growth factors (IGFs) and IGF binding proteins with vitronectin. Endocrinology 144:2807–2815PubMedCrossRefGoogle Scholar
  134. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  135. Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L (1996) Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19:1291–1301PubMedCrossRefGoogle Scholar
  136. Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L (1998) The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 20:815–822CrossRefGoogle Scholar
  137. Larraín J, Cizmeci-Smith G, Troncoso V, Stahl RC, Carey DJ, Brandan E (1997) Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J Biol Chem 272:18418–18424PubMedCrossRefGoogle Scholar
  138. Larraín J, Carey DJ, Brandan E (1998) Syndecan-1 expression inhibits myoblast differentiation through a basic fibroblast growth factor-dependent mechanism. J Biol Chem 273:32288–32296PubMedCrossRefGoogle Scholar
  139. Lauri SE, Kaukinen S, Kinnunen T, Ylinen A, Imai S, Kaila K, Taira T, Rauvala H (1999) Regulatory role and molecular interactions of a cell-surface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci 19:1226–1235PubMedGoogle Scholar
  140. Layne MD, Farmer SR (1999) Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res 249:177–187PubMedCrossRefGoogle Scholar
  141. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA Jr (1994) T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med 180:807–816PubMedCrossRefGoogle Scholar
  142. Lee D, Oh ES, Woods A, Couchman JR, Lee W (1998) Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:13022–13029PubMedCrossRefGoogle Scholar
  143. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM (2002) A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 4:399–407PubMedCrossRefGoogle Scholar
  144. Li YP (2003) TNF-α is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:C370–C376PubMedCrossRefGoogle Scholar
  145. Li YP, Reid MB (2000) NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279:R1165–R1170PubMedGoogle Scholar
  146. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J 12:871–880PubMedGoogle Scholar
  147. Lin X, Buff EM, Perrimon N, Michelson AM (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during drosophila embryonic development. Development 126:3715–3723PubMedGoogle Scholar
  148. Lipscombe RJ, Nakhoul AM, Sanderson CJ, Coombe DR (1998) Interleukin-5 binds to heparin/heparan sulfate. A model for an interaction with extracellular matrix. J Leukoc Biol 63:342–350PubMedGoogle Scholar
  149. Liu X, Nestor KE, McFarland DC, Velleman SG (2002) Developmental expression of skeletal muscle heparan sulfate proteoglycans in turkeys with different growth rates. Poult Sci 81:1621–1628PubMedCrossRefGoogle Scholar
  150. Liu X, McFarland DC, Nestor KE, Velleman SG (2004) Developmental regulated expression of syndecan-1 and glypican in pectoralis major muscle in turkeys with different growth rates. Dev Growth Differ 4:37–51CrossRefGoogle Scholar
  151. Liu C, McFarland DC, Nestor KE, Velleman SG (2006) Differential expression of membrane-associated heparan sulfate proteoglycans in the skeletal muscle of turkeys with different growth rates. Poult Sci 85:422–428PubMedCrossRefGoogle Scholar
  152. Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR (1999) Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci 112:3421–3431PubMedGoogle Scholar
  153. López-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massagué J (1991) Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 67:785–795PubMedCrossRefGoogle Scholar
  154. López-Casillas F, Payne HM, Andres JL, Massague J (1994) Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 124:557–568PubMedCrossRefGoogle Scholar
  155. Lortat Jacob H, Grimaud JA (1991) Interferon-gamma C-terminal function: new working hypothesis: heparan sulfate and heparin, new targets for IFN-gamma, protect, relax the cytokine and regulate its activity. Cell Mol Biol 37:253–260PubMedGoogle Scholar
  156. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:1–24CrossRefGoogle Scholar
  157. Lyon M, Gallagher JT (1994) Hepatocyte growth factor/scatter factor: a heparan sulphate-binding pleiotropic growth factor. Biochem Soc Trans 22:365–370PubMedCrossRefGoogle Scholar
  158. Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem 272:18000–18006PubMedCrossRefGoogle Scholar
  159. Lyon M, Rushton G, Askari JA, Humphries MJ, Gallagher JT (2000) Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. J Biol Chem 275:4599–4606PubMedCrossRefGoogle Scholar
  160. Marynen P, Zhang J, Cassiman JJ, Van den Berghe H, David G (1989) Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblasts. Prediction of an integral membrane domain and evidence for multiple distinct core proteins at the cell surface of human lung fibroblasts. J Biol Chem 264:7017–7024PubMedGoogle Scholar
  161. Mauro A (1961) Satellite cells of muscle skeletal fibers. J Biophys Biochem 9:493–495CrossRefGoogle Scholar
  162. McFarland DC (1999) Influence of growth factors on poultry myogenic satellite cells. Poult Sci 78:747–758PubMedCrossRefGoogle Scholar
  163. Melo F, Carey DJ, Brandan E (1996) Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J Cell Biochem 62:227–239PubMedCrossRefGoogle Scholar
  164. Metkar SS, Wang B, Aguilar-Santelises M, Raja SM, Uhlin-Hansen L, Podack E, Trapani JA, Froelich CJ (2002) Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity 16:417–428PubMedCrossRefGoogle Scholar
  165. Michalopoulos GK (1995) Hepatocyte growth factor (HGF) and its receptor (Met) in liver regeneration, neoplasia, and disease. In: Jirtle RL (ed) Liver regeneration and carcinogenesis. Academic, New York, pp 27–49CrossRefGoogle Scholar
  166. Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278:C174–C181PubMedGoogle Scholar
  167. Mitchell PO, Pavlath GK (2001) A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol Cell Physiol 281:C1706–C1715PubMedGoogle Scholar
  168. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  169. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435PubMedCrossRefGoogle Scholar
  170. Mummery RS, Rider CC (2000) Characterization of the heparin-binding properties of IL-6. J Immunol 165:5671–5679PubMedCrossRefGoogle Scholar
  171. Musaro A, Rosenthal N (1999) Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol Cell Biol 19:3115–3124PubMedPubMedCentralCrossRefGoogle Scholar
  172. Mylona E, Jones KA, Mills ST, Pavlath GK (2006) CD44 regulates myoblast migration and differentiation. J Cell Physiol 209:314–321PubMedCrossRefGoogle Scholar
  173. Mythreye K, Blobe GC (2009) Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 21:1548–1558PubMedPubMedCentralCrossRefGoogle Scholar
  174. Naccache SN, Hasson T, Horowitz A (2006) Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Natl Acad Sci U S A 103:12735–12740PubMedPubMedCentralCrossRefGoogle Scholar
  175. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) Review CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579PubMedCrossRefGoogle Scholar
  176. Nascimento FD, Rizzi CC, Nantes IL, Stefe I, Turk B, Carmona AK, Nader HB, Juliano L, Tersariol IL (2005) Cathepsin X binds to cell surface heparan sulfate proteoglycans. Arch Biochem Biophys 436(2):323–332PubMedCrossRefGoogle Scholar
  177. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22PubMedGoogle Scholar
  178. Oh ES, Couchman JR (2004) Syndecans-2 and -4; close cousins, but not identical twins. Mol Cells 17:181–187PubMedGoogle Scholar
  179. Oh ES, Woods A, Couchman JR (1997) Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J Biol Chem 272:11805–11811PubMedCrossRefGoogle Scholar
  180. Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR (1998) Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem 273:10624–10629PubMedCrossRefGoogle Scholar
  181. Ohkawara B, Iemura S, ten Dijke P, Ueno N (2002) Action range of BMP is defined by its N-terminal basic amino acid core. Curr Biol 12:205–209PubMedCrossRefGoogle Scholar
  182. Okuyama E, Suzuki A, Murata M, Ando Y, Kato I, Takagi Y, Takagi A, Murate T, Saito H, Kojima T (2013) Molecular mechanisms of syndecan-4 upregulation by TNF-á in the endothelium-like EAhy926 cells. J Biochem 154:41–50PubMedCrossRefGoogle Scholar
  183. Osses N, Brandan E (2001) ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Cell Physiol 282:C383–C394CrossRefGoogle Scholar
  184. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  185. Parker MH, Seale P, Rudnicki MA (2003) Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4:497–507PubMedCrossRefGoogle Scholar
  186. Paveliev M, Hienola A, Jokitalo E, Planken A, Bespalov MM, Rauvala H, Saarma M (2008) Sensory neurons from N-syndecan-deficient mice are defective in survival. Neuroreport 19:1397–1400PubMedCrossRefGoogle Scholar
  187. Pedersen BK (2012) Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exerc 44:392–396PubMedCrossRefGoogle Scholar
  188. Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3:1337–1362PubMedGoogle Scholar
  189. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406PubMedCrossRefGoogle Scholar
  190. Pellet-Many C, Frankel P, Jia H, Zachary IC (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226PubMedCrossRefGoogle Scholar
  191. Peretti T, Waisberg J, Mader AM, de Matos LL, da Costa RB, Conceição GM, Lopes AC, Nader HB, Pinhal MA (2008) Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma. Eur J Gastroenterol Hepatol 20:756–765PubMedCrossRefGoogle Scholar
  192. Philippou A, Maridaki M, Halapas A, Koutsilieris M (2007) The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo 21:45–54PubMedGoogle Scholar
  193. Pisconti A, Cornelison DD, Olguín HC, Antwine TL, Olwin BB (2010) Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 190(3):427–441. doi: 10.1083/jcb.201003081 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45PubMedCrossRefGoogle Scholar
  195. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617PubMedCrossRefGoogle Scholar
  196. Puppa MJ, White JP, Velázquez KT, Baltgalvis KA, Sato S, Baynes JW, Carson JA (2012) The effect of exercise on IL-6-induced cachexia in the Apc (Min/+) mouse. J Cachexia Sarcopenia Muscle 3:117–137PubMedPubMedCentralCrossRefGoogle Scholar
  197. Raja SM, Wang B, Dantuluri M, Desai UR, Demeler B, Spiegel K, Metkar SS, Froelich CJ (2002) Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem 277:49523–49530PubMedCrossRefGoogle Scholar
  198. Rapraeger AC, Bernfield MR (1983) Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteglycan associates quantitatively with lipid vesicles. J Biol Chem 258:3632–3636PubMedGoogle Scholar
  199. Rapraeger AC, Jalkanen M, Endo E, Koda J, Bernfield M (1985) The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem 260:11046–11052PubMedGoogle Scholar
  200. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708PubMedCrossRefGoogle Scholar
  201. Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 269:12999–13004PubMedGoogle Scholar
  202. Reardon KA, Kapsa RM, Davis J, Kornberg AJ, Austin L, Choong P, Byrne E (2000) Increased levels of leukemia inhibitory factor mRNA in muscular dystrophy and human muscle trauma. Muscle Nerve 23:962–966PubMedCrossRefGoogle Scholar
  203. Rider CC (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34:458–460PubMedCrossRefGoogle Scholar
  204. Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054PubMedCrossRefGoogle Scholar
  205. Rolny C, Spillmann D, Lindahl U, Claesson-Welsh L (2002) Heparin amplifies platelet-derived growth factor (PDGF)- BB-induced PDGF alpha-receptor but not PDGF beta-receptor tyrosine phosphorylation in heparan sulfate-deficient cells. Effects on signal transduction and biological responses. J Biol Chem 277:19315–19321PubMedCrossRefGoogle Scholar
  206. Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 73:2538–2543PubMedGoogle Scholar
  207. Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17:608–613PubMedCrossRefGoogle Scholar
  208. Rubin JS, Day RM, Breckenridge D, Atabey N, Taylor WG, Stahl SJ, Wingfield PT, Kaufman JD, Schwall R, Bottaro DP (2001) Dissociation of heparan sulfate and receptor binding domains of hepatocyte growth factor reveals that heparan sulfate-c-met interaction facilitates signaling. J Biol Chem 276:32977–32983PubMedCrossRefGoogle Scholar
  209. Ruppert R, Hoffamn E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237:295–302PubMedCrossRefGoogle Scholar
  210. Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 84:980–988PubMedCrossRefGoogle Scholar
  211. Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA (1996) The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest 97:1111–1116PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sakuma K, Watanabe K, Totsuka T, Uramoto I, Sano M, Sakamoto K (1998) Differential adaptations of insulin-like growth factor-I, basic fibroblast growth factor, and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropathol (Berl) 95:123–130CrossRefGoogle Scholar
  213. Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T (2000) Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1497:77–88PubMedCrossRefGoogle Scholar
  214. Salek-Ardakani S, Arrand JR, Shaw D, Mackett M (2000) Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 96:1879–1888PubMedGoogle Scholar
  215. Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, Robinson SD, Hynes RO, Goetinck PF (1999) Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci U S A 96:2805–2810PubMedPubMedCentralCrossRefGoogle Scholar
  216. Schonwasser DC, Marais RM, Marshall CJ, Parker PJ (1998) Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18:790–798PubMedPubMedCentralCrossRefGoogle Scholar
  217. Schoser BG, Storjohann S, Kunze K (1998) Immunolocalization of leukemia inhibitory factor in normal and denervated human muscle. Neuroreport 9:2843–2846PubMedCrossRefGoogle Scholar
  218. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456PubMedCrossRefGoogle Scholar
  219. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite-cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44PubMedCrossRefGoogle Scholar
  220. Seth A, Gote L, Nagarkatti M, Nagarkatti PS (1991) T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-14. Proc Natl Acad Sci U S A 88:7877–7881PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245PubMedCrossRefGoogle Scholar
  222. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66PubMedPubMedCentralCrossRefGoogle Scholar
  223. Sherman L, Wainwright D, Ponta H, Herrlich P (1998) A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev 12:1058–1071PubMedPubMedCentralCrossRefGoogle Scholar
  224. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708PubMedCrossRefGoogle Scholar
  225. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745PubMedCrossRefGoogle Scholar
  226. Song Y, Nestor KE, McFarland DC, Velleman SG (2010) Effect of glypican-1 covalently attached chains on turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 responsiveness. Poult Sci 89:123–134PubMedCrossRefGoogle Scholar
  227. Song Y, McFarland DC, Velleman SG (2011) Role of syndecan-4 side chains in turkey satellite cell growth and development. Dev Growth Differ 53:97–109PubMedCrossRefGoogle Scholar
  228. Song Y, McFarland DC, Velleman SG (2012a) Fibroblast growth factor 2 and protein kinase C alpha are involved in syndecan-4 cytoplasmic domain modulation of turkey myogenic satellite cell proliferation. Comp Biochem Physiol A Mol Integr Physiol 161:44–52PubMedCrossRefGoogle Scholar
  229. Song Y, McFarland DC, Velleman SG (2012b) Critical amino acids in syndecan-4 cytoplasmic domain modulation of turkey satellite cell growth and development. Comp Biochem Physiol A Mol Integr Physiol 161:271–278PubMedCrossRefGoogle Scholar
  230. Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283:C204–C211PubMedCrossRefGoogle Scholar
  231. Spangenburg EE, Booth FW (2006) Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF (-/-) mouse. Cytokine 34:125–130PubMedCrossRefGoogle Scholar
  232. Sperinde GV, Nugent MA (1998) Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 37:13153–13164PubMedCrossRefGoogle Scholar
  233. Spillmann D, Witt D, Lindahl U (1998) Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 273:15487–15493PubMedCrossRefGoogle Scholar
  234. Sporer KR, Chiang W, Tempelman RJ, Ernst CW, Reed KM, Velleman SG, Strasburg GM (2011) Characterization of a 6 K oligonucleotide turkey skeletal muscle microarray. Anim Genet 42:75–82PubMedCrossRefGoogle Scholar
  235. Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signalling by cell surface-associated syndecans and glypican. J Cell Biol 133:405–416PubMedCrossRefGoogle Scholar
  236. Stevens RL, Fox CC, Lichtenstein LM, Austen KF (1988) Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells. Proc Natl Acad Sci U S A 85:2284–2287PubMedPubMedCentralCrossRefGoogle Scholar
  237. Summers PJ, Medrano JF (1997) Delayed myogenesis associated with muscle fiber hyperplasia in high-growth mice. Proc Soc Exp Biol Med 214:380–385PubMedCrossRefGoogle Scholar
  238. Suzuki T, Do MK, Sato Y, Ojima K, Hara M, Mizunoya W, Nakamura M, Furuse M, Ikeuchi Y, Anderson JE, Tatsumi R (2012) Comparative analysis of semaphorin 3A in soleus and EDL muscle satellite cells in vitro toward understanding its role in modulating myogenin expression. Int J Biochem Cell Biol 45:476–482PubMedCrossRefGoogle Scholar
  239. Szalay K, Duda E (1997) TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur J Cell Biol 74:391–398PubMedGoogle Scholar
  240. Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, Ogamo A, Kamijo R (2003) Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 278:43229–43235PubMedCrossRefGoogle Scholar
  241. Takayama H, LaRochelle WJ, Anver M, Bockman DE, Merlino G (1996) Scatter factor/hepatocyte growth factor as regulator of skeletal muscle and neural crest development. Proc Natl Acad Sci U S A 93:5866–5871PubMedPubMedCentralCrossRefGoogle Scholar
  242. Tanaka Y, Kimata K, Adams DH, Eto S (1998) Modulation of cytokine function by heparan sulfate proteoglycans: sophisticated models for the regulation of cellular responses to cytokines. Proc Assoc Am Physicians 110:118–125PubMedGoogle Scholar
  243. Tanaka S, Tachino K, Kawahara E, Tanaka J, Funakoshi H, Nakamura T (2006) Hepatocyte growth factor in mouse soleus muscle increases with reloading after unloading. J Phys Ther Sci 18:33–41CrossRefGoogle Scholar
  244. Tantravahi RV, Stevens RL, Austen KF, Weis JH (1986) A single gene in mast cells encodes the core peptides of heparin and chondroitin sulfate proteoglycans. Proc Natl Acad Sci U S A 83:9207–9210PubMedPubMedCentralCrossRefGoogle Scholar
  245. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  246. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267:107–114PubMedCrossRefGoogle Scholar
  247. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanical stretched skeletal muscle satellite cells and the role of pH and nitric oxide. Mol Biol Cell 13:2909–2918PubMedPubMedCentralCrossRefGoogle Scholar
  248. Taylor DR, Whitehouse IJ, Hooper NM (2009) Glypican-1 mediates both prion protein lipid raft association and disease isoform formation. PLoS Pathog 5, e1000666PubMedPubMedCentralCrossRefGoogle Scholar
  249. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224:7–16PubMedGoogle Scholar
  250. Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK (1999) Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regenerations after traumatic injury. Am J Physiol 277:C320–C329PubMedGoogle Scholar
  251. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380PubMedCrossRefGoogle Scholar
  252. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187PubMedPubMedCentralCrossRefGoogle Scholar
  253. Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H, Monden M (1996) Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 97:244–249PubMedPubMedCentralCrossRefGoogle Scholar
  254. Tumova S, Woods A, Couchman JR (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol 32:269–288PubMedCrossRefGoogle Scholar
  255. Uldbjerg N, Malmström A (1991) The role of proteoglycans in cervical dilatation. Semin Perinatol 15:127–132PubMedGoogle Scholar
  256. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E, Pals ST (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274:6499–6506PubMedCrossRefGoogle Scholar
  257. van der Voort R, Keehnen RMJ, Beuling EA, Spaargaren M, Pals SP (2000) Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 192:1115–1124PubMedPubMedCentralCrossRefGoogle Scholar
  258. Velasco-Loyden G, Arribas J, López-Casillas F (2004) The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. J Biol Chem 279:7721–7733PubMedCrossRefGoogle Scholar
  259. Velleman SG, Liu C, Coy CS, McFarland DC (2006) Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness. Dev Growth Differ 48:271–276PubMedCrossRefGoogle Scholar
  260. Velleman SG, Shin J, Li X, Song Y (2012) The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can J Anim Sci 92:1–10CrossRefGoogle Scholar
  261. Velleman SG, Song Y, Shin J, McFarland DC (2013) Modulation of turkey myogenic satellite cell differentiation through the shedding of glypican-1. Comp Biochem Physiol A Mol Integr Physiol 164:36–43PubMedCrossRefGoogle Scholar
  262. Volk R, Schwartz JJ, Li J, Rosenberg RD, Simons M (1999) The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem 274:24417–24424PubMedCrossRefGoogle Scholar
  263. Wang Z, Collighan RJ, Gross SR, Danen EH, Orend G, Telci D, Griffin M (2010) RGD-independent cell adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 and α5β1 integrin co-signaling. J Biol Chem 285:40212–40229PubMedPubMedCentralCrossRefGoogle Scholar
  264. Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16:1630–1632PubMedGoogle Scholar
  265. White JP, Reecy JM, Washington TA, Sato S, Le ME, Davis JM, Wilson LB, Carson JA (2009) Overload-induced skeletal muscle extracellular matrix remodelling and myofibre growth in mice lacking IL-6. Acta Physiol (Oxf) 197:321–332PubMedCentralCrossRefGoogle Scholar
  266. Whiteford JR, Behrends V, Kirby H, Kusche-Gulberg M, Maramtsu T, Couchman JR (2007) Syndecans promote integrin mediated adhesion of mesenchymal cells in two distinct pathways. Exp Cell Res 313:3902–3913PubMedCrossRefGoogle Scholar
  267. Wilcox-Adelman SA, Denhez F, Iwabuchi T, Saoncella S, Calautti E, Goetinck PF (2002) Syndecan-4: dispensable or indispensable? Glycoconj J 19:305–313PubMedCrossRefGoogle Scholar
  268. Wong K, Rubenthiran U, Jothy S (2003) Motility of colon cancer cells: Modulation by CD44 isoform expression. Exp Mol Pathol 75:124–130PubMedCrossRefGoogle Scholar
  269. Woods A, Couchman JR (2000) Integrin modulation by lateral association. J Biol Chem 275:24233–24236PubMedCrossRefGoogle Scholar
  270. Woods A, Longley RL, Tumova S, Couchman JR (2000) Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 374:66–72PubMedCrossRefGoogle Scholar
  271. Wu ZL, Zhang L, Yabe T, Kuberan B, Beeler DL, Love A, Rosenberg RD (2003) The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex. J Biol Chem 278:17121–17129PubMedCrossRefGoogle Scholar
  272. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42PubMedCrossRefGoogle Scholar
  273. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848PubMedCrossRefGoogle Scholar
  274. Yu Q, Toole BP (1996) A new alternatively spliced exon between v9 and v10 provides a molecular basis for synthesis of soluble CD44. J Biol Chem 271:20603–20607PubMedCrossRefGoogle Scholar
  275. Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275:4183–4191PubMedCrossRefGoogle Scholar
  276. Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16:307–323PubMedPubMedCentralCrossRefGoogle Scholar
  277. Zacks SI, Sheff MF (1982) Age-related impeded regeneration of mouse minced anterior tibial muscle. Muscle Nerve 5:152–161PubMedCrossRefGoogle Scholar
  278. Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279:33220–33227PubMedCrossRefGoogle Scholar
  279. Zhang Y, Cao L, Yang BL, Yang BB (1998) The G3 domain of versican enhances cell proliferation via epidermial growth factor-like motifs. J Biol Chem 273:21342–21351PubMedCrossRefGoogle Scholar
  280. Zhang X, Liu C, Nestor KE, McFarland DC, Velleman SG (2007) The effect of glypican-1 glycosaminoglycan chains on turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 responsiveness. Poult Sci 86:2020–2028PubMedCrossRefGoogle Scholar
  281. Zhang X, Nestor KE, McFarland DC, Velleman SG (2008) The role of syndecan-4 and attached glycosaminoglycan chains on myogenic satellite cell growth. Matrix Biol 27:619–630PubMedCrossRefGoogle Scholar
  282. Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, Schulz J, N’Kuli F, Courtoy PJ, David G (2005) Syndecan recycling is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell 9:377–388PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations