Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 900))

Abstract

Skeletal muscle stem cells, known as satellite cells (SC), are an absolute requirement for muscle regeneration and contribute significantly to post-natal muscle growth. This stem cell population is governed by a network of transcription factors collectively referred to as the myogenic regulatory factors. These factors are responsible for the progression of a SC from the quiescent state through activation, proliferation and terminal differentiation in a process referred to as the myogenic programme. At each stage in this process, cytokines and growth factors have been shown to play a role in directing the myogenic response. The myogenic programme is complex and requires input from a host of factors that provide both stimulatory and inhibitory signals that regulate SC. Despite years of work in this field, there remains a paucity of information on the precise factors that drive the myogenic programme. In recent years, factors, such as IL-6, have been shown to be critical factors in promoting SC proliferation. In fact, a complete absence of IL-6 in skeletal muscle substantially impairs muscle SC proliferation. These observations highlight the potential importance of the inflammatory response and the cross-talk between inflammatory cells and SC in promoting muscle repair and growth. This chapter will focus on recent advances in cytokine (and some growth factors) regulation of SC. Work from cell, animal and human models will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GR, Caiozzo VJ, Haddad F, Baldwin KM (2002) Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 283(4):C1182–C1195

    Article  CAS  PubMed  Google Scholar 

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312

    Article  CAS  PubMed  Google Scholar 

  • Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22(10):1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Baeza-Raja B, Muñoz-Cánoves P (2004) p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell 15(4):2013–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R, Py G (2013) Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One 8(2):e57141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515

    Article  CAS  PubMed  Google Scholar 

  • Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MA (2008) IL-4 production by T cells: you need a little to get a lot. J Immunol 181(5):2941–2942

    Article  CAS  PubMed  Google Scholar 

  • Cantini M, Massimino ML, Bruson A, Catani C, Dalla Libera L, Carraro U (1994) Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun 202(3):1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Carbó N, López-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM, Quinn LS, López-Soriano FJ, Argilés JM (2001) Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 1526(1):17–24

    Article  PubMed  Google Scholar 

  • Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier F-J, Bassaglia Y, Shinin V, Tajbakhsh S, chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18(4):1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conboy IM, Rando T a (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  CAS  PubMed  Google Scholar 

  • Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(Pt 17):2895–2901

    CAS  PubMed  Google Scholar 

  • Cossu G, Mavilio F (2000) Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105(12):1669–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crameri RM, Langberg H, Magnusson P, Jensen CH, Schrøder HD, Olesen JL, Suetta C, Teisner B, Kjaer M (2004) Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol 558(Pt 1):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol (1985) 63(5):1816–1821

    CAS  Google Scholar 

  • Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D (2014) Effect of exercise training on skeletal muscle cytokine expression in the elderly. Brain Behav Immun 39:80–86

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189(7):3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donges CE, Duffield R, Smith GC, Short MJ, Edge JA (2014) Cytokine mRNA expression responses to resistance, aerobic, and concurrent exercise in sedentary middle-aged men. Appl Physiol Nutr Metab 39(2):130–137

    Article  CAS  PubMed  Google Scholar 

  • Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124(2):820–825

    Article  CAS  PubMed  Google Scholar 

  • Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16(11):1335–1347. doi:10.1096/fj.01-0876rev

    Article  CAS  PubMed  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furmanczyk PS, Quinn LS (2003) Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27(10):845–851

    Article  CAS  PubMed  Google Scholar 

  • Grubb A, Joanisse S, Moore DR, Bellamy LM, Mitchell CJ, Phillips SM, Parise G (2014) IGF-1 colocalizes with muscle satellite cells following acute exercise in humans. Appl Physiol Nutr Metab 39(4):514–518

    Article  CAS  PubMed  Google Scholar 

  • Guerci A, Lahoute C, Hébrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Précigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985) 91(2):534–551

    CAS  Google Scholar 

  • Hoene M, Runge H, Häring HU, Schleicher ED, Weigert C (2013) Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway. Am J Physiol Cell Physiol 304(2):C128–C136

    Article  CAS  PubMed  Google Scholar 

  • Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16(4–5):575–584

    Article  CAS  PubMed  Google Scholar 

  • Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin V, Butler-Browne GS, Furling D, Mouly V (2007) IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci 120(Pt 4):670–681

    Article  CAS  PubMed  Google Scholar 

  • Kadi F, Thornell LE (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431(7007):466–471

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T (2005) Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 23:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L (1996) Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19(10):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka M, Machida S (2013) Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 46(4):365–373

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP (2006) Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 312(7):1127–1141

    Article  CAS  PubMed  Google Scholar 

  • Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepper C, Partridge TA, Fan C-M (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D, Renault VM, Rando TA (2005) The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16:612–622

    Article  CAS  PubMed  Google Scholar 

  • Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122(3):831–838

    CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay BR, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586(Pt 22):5549–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay BR, De Lisio M, Johnston APW, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2009) Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One 4(6):e6027

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay BR, Toth KG, Tarnopolsky MA, Parise G (2010) Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 588(Pt 17):3307–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26(6):2509–2521

    Article  CAS  PubMed  Google Scholar 

  • McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G (2013) Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunctions. Am J Physiol Cell Physiol 304(8):C717–C728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Zou X, Wu R, Zhong R, Zhu D, Zhang Y (2014) Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 5(3):235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM (2013) Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8(10):e78636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly C, McKay B, Phillips S, Tarnopolsky M, Parise G (2008) Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle Nerve 38(5):1434–1442

    Article  PubMed  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23(16):3430–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen BK (2007) IL-6 signalling in exercise and disease. Biochem Soc Trans 35(Pt 5):1295–1297

    Google Scholar 

  • Petrella JK, Kim J, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937–E946

    Article  CAS  PubMed  Google Scholar 

  • Petrella JK, Kim J-S, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 104(6):1736–1742

    Article  Google Scholar 

  • Possidonio ACB, Senna ML, Portilho DM, Pontes Soares C, da Silva Sampaio L, Einicker-Lamas M, Castelo Branco MTLC, Costa ML, Mermelstein C (2011) α-Cyclodextrin enhances myoblast fusion and muscle differentiation by the release of IL-4. Cytokine 55(2):280–287

    Article  CAS  PubMed  Google Scholar 

  • Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM (2007) Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev 13:67–75

    PubMed  Google Scholar 

  • Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985) 73(6):2538–2543

    CAS  Google Scholar 

  • Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17(6):608–613

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331

    Article  CAS  PubMed  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Sinha-Hikim I, Roth SM, Lee MI, Bhasin S (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285(1):E197–E205

    Article  CAS  PubMed  Google Scholar 

  • Smith LR, Chambers HG, Lieber RL (2013) Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol 55(3):264–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, HAttori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–C1494

    Article  CAS  PubMed  Google Scholar 

  • Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16

    PubMed  Google Scholar 

  • Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6(3):e17392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210(2):440–455

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288(3):1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Parise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joanisse, S., Parise, G. (2016). Cytokine Mediated Control of Muscle Stem Cell Function. In: White, J., Smythe, G. (eds) Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease. Advances in Experimental Medicine and Biology, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-319-27511-6_2

Download citation

Publish with us

Policies and ethics