Cytokine Mediated Control of Muscle Stem Cell Function

  • Sophie Joanisse
  • Gianni PariseEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 900)


Skeletal muscle stem cells, known as satellite cells (SC), are an absolute requirement for muscle regeneration and contribute significantly to post-natal muscle growth. This stem cell population is governed by a network of transcription factors collectively referred to as the myogenic regulatory factors. These factors are responsible for the progression of a SC from the quiescent state through activation, proliferation and terminal differentiation in a process referred to as the myogenic programme. At each stage in this process, cytokines and growth factors have been shown to play a role in directing the myogenic response. The myogenic programme is complex and requires input from a host of factors that provide both stimulatory and inhibitory signals that regulate SC. Despite years of work in this field, there remains a paucity of information on the precise factors that drive the myogenic programme. In recent years, factors, such as IL-6, have been shown to be critical factors in promoting SC proliferation. In fact, a complete absence of IL-6 in skeletal muscle substantially impairs muscle SC proliferation. These observations highlight the potential importance of the inflammatory response and the cross-talk between inflammatory cells and SC in promoting muscle repair and growth. This chapter will focus on recent advances in cytokine (and some growth factors) regulation of SC. Work from cell, animal and human models will be discussed.


Satellite cells Myogenic programme Muscle repair Muscle growth Inflammation IL-6 


  1. Adams GR, Caiozzo VJ, Haddad F, Baldwin KM (2002) Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 283(4):C1182–C1195CrossRefPubMedGoogle Scholar
  2. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312CrossRefPubMedGoogle Scholar
  3. Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22(10):1350–1360CrossRefPubMedGoogle Scholar
  4. Baeza-Raja B, Muñoz-Cánoves P (2004) p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell 15(4):2013–2026CrossRefPubMedPubMedCentralGoogle Scholar
  5. Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R, Py G (2013) Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One 8(2):e57141CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515CrossRefPubMedGoogle Scholar
  8. Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–242CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brown MA (2008) IL-4 production by T cells: you need a little to get a lot. J Immunol 181(5):2941–2942CrossRefPubMedGoogle Scholar
  10. Cantini M, Massimino ML, Bruson A, Catani C, Dalla Libera L, Carraro U (1994) Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun 202(3):1688–1696CrossRefPubMedGoogle Scholar
  11. Carbó N, López-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM, Quinn LS, López-Soriano FJ, Argilés JM (2001) Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 1526(1):17–24CrossRefPubMedGoogle Scholar
  12. Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier F-J, Bassaglia Y, Shinin V, Tajbakhsh S, chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18(4):1397–1409CrossRefPubMedPubMedCentralGoogle Scholar
  13. Conboy IM, Rando T a (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409CrossRefPubMedGoogle Scholar
  14. Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(Pt 17):2895–2901PubMedGoogle Scholar
  15. Cossu G, Mavilio F (2000) Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105(12):1669–1674CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crameri RM, Langberg H, Magnusson P, Jensen CH, Schrøder HD, Olesen JL, Suetta C, Teisner B, Kjaer M (2004) Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol 558(Pt 1):333–340CrossRefPubMedPubMedCentralGoogle Scholar
  17. Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol (1985) 63(5):1816–1821Google Scholar
  18. Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D (2014) Effect of exercise training on skeletal muscle cytokine expression in the elderly. Brain Behav Immun 39:80–86CrossRefPubMedGoogle Scholar
  19. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189(7):3669–3680CrossRefPubMedPubMedCentralGoogle Scholar
  20. Donges CE, Duffield R, Smith GC, Short MJ, Edge JA (2014) Cytokine mRNA expression responses to resistance, aerobic, and concurrent exercise in sedentary middle-aged men. Appl Physiol Nutr Metab 39(2):130–137CrossRefPubMedGoogle Scholar
  21. Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124(2):820–825CrossRefPubMedGoogle Scholar
  22. Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16(11):1335–1347. doi: 10.1096/fj.01-0876rev CrossRefPubMedGoogle Scholar
  23. Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051CrossRefPubMedPubMedCentralGoogle Scholar
  24. Furmanczyk PS, Quinn LS (2003) Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27(10):845–851CrossRefPubMedGoogle Scholar
  25. Grubb A, Joanisse S, Moore DR, Bellamy LM, Mitchell CJ, Phillips SM, Parise G (2014) IGF-1 colocalizes with muscle satellite cells following acute exercise in humans. Appl Physiol Nutr Metab 39(4):514–518CrossRefPubMedGoogle Scholar
  26. Guerci A, Lahoute C, Hébrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Précigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15(1):25–37CrossRefPubMedGoogle Scholar
  27. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985) 91(2):534–551Google Scholar
  28. Hoene M, Runge H, Häring HU, Schleicher ED, Weigert C (2013) Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway. Am J Physiol Cell Physiol 304(2):C128–C136CrossRefPubMedGoogle Scholar
  29. Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16(4–5):575–584CrossRefPubMedGoogle Scholar
  30. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494CrossRefPubMedGoogle Scholar
  31. Jacquemin V, Butler-Browne GS, Furling D, Mouly V (2007) IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci 120(Pt 4):670–681CrossRefPubMedGoogle Scholar
  32. Kadi F, Thornell LE (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113(2):99–103CrossRefPubMedGoogle Scholar
  33. Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431(7007):466–471CrossRefPubMedGoogle Scholar
  34. Kishimoto T (2005) Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 23:1–21CrossRefPubMedGoogle Scholar
  35. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31CrossRefPubMedGoogle Scholar
  36. Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L (1996) Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19(10):1291–1301CrossRefPubMedGoogle Scholar
  37. Kurosaka M, Machida S (2013) Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 46(4):365–373CrossRefPubMedGoogle Scholar
  38. Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP (2006) Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 312(7):1127–1141CrossRefPubMedGoogle Scholar
  39. Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lepper C, Partridge TA, Fan C-M (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luo D, Renault VM, Rando TA (2005) The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16:612–622CrossRefPubMedGoogle Scholar
  42. Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122(3):831–838PubMedGoogle Scholar
  43. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  44. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666CrossRefPubMedPubMedCentralGoogle Scholar
  45. McKay BR, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586(Pt 22):5549–5560CrossRefPubMedPubMedCentralGoogle Scholar
  46. McKay BR, De Lisio M, Johnston APW, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2009) Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One 4(6):e6027CrossRefPubMedPubMedCentralGoogle Scholar
  47. McKay BR, Toth KG, Tarnopolsky MA, Parise G (2010) Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 588(Pt 17):3307–3320CrossRefPubMedPubMedCentralGoogle Scholar
  48. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26(6):2509–2521CrossRefPubMedGoogle Scholar
  49. McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G (2013) Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunctions. Am J Physiol Cell Physiol 304(8):C717–C728CrossRefPubMedPubMedCentralGoogle Scholar
  50. Meng J, Zou X, Wu R, Zhong R, Zhu D, Zhang Y (2014) Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 5(3):235–247CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM (2013) Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8(10):e78636CrossRefPubMedPubMedCentralGoogle Scholar
  52. O’Reilly C, McKay B, Phillips S, Tarnopolsky M, Parise G (2008) Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle Nerve 38(5):1434–1442CrossRefPubMedGoogle Scholar
  53. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23(16):3430–3439CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pedersen BK (2007) IL-6 signalling in exercise and disease. Biochem Soc Trans 35(Pt 5):1295–1297Google Scholar
  55. Petrella JK, Kim J, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937–E946CrossRefPubMedGoogle Scholar
  56. Petrella JK, Kim J-S, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 104(6):1736–1742CrossRefGoogle Scholar
  57. Possidonio ACB, Senna ML, Portilho DM, Pontes Soares C, da Silva Sampaio L, Einicker-Lamas M, Castelo Branco MTLC, Costa ML, Mermelstein C (2011) α-Cyclodextrin enhances myoblast fusion and muscle differentiation by the release of IL-4. Cytokine 55(2):280–287CrossRefPubMedGoogle Scholar
  58. Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM (2007) Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev 13:67–75PubMedGoogle Scholar
  59. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280(1):55–63CrossRefPubMedGoogle Scholar
  60. Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985) 73(6):2538–2543Google Scholar
  61. Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17(6):608–613CrossRefPubMedGoogle Scholar
  62. Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331CrossRefPubMedGoogle Scholar
  63. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656CrossRefPubMedGoogle Scholar
  64. Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218(2):115–124CrossRefPubMedGoogle Scholar
  65. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44CrossRefPubMedGoogle Scholar
  66. Sinha-Hikim I, Roth SM, Lee MI, Bhasin S (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285(1):E197–E205CrossRefPubMedGoogle Scholar
  67. Smith LR, Chambers HG, Lieber RL (2013) Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol 55(3):264–270CrossRefPubMedPubMedCentralGoogle Scholar
  68. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, HAttori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–C1494CrossRefPubMedGoogle Scholar
  70. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16PubMedGoogle Scholar
  71. Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6(3):e17392CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210(2):440–455CrossRefPubMedGoogle Scholar
  73. Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288(3):1489–1499CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of KinesiologyMcMaster UniversityHamiltonCanada

Personalised recommendations