Hepatocyte Growth Factor and Satellite Cell Activation

  • Judy E. AndersonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 900)


Satellite cells are the “currency” for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.


c-met receptor HGF Skeletal muscle Growth Regeneration Nitric oxide Muscle atrophy Cytoskeleton DGC Zebrafish 


  1. Alfaro LA, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DD, Rossi FM (2011) CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 29(12):2030–2041PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315PubMedCrossRefGoogle Scholar
  3. Allen RE, Rankin LL (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med 194(2):81–86PubMedCrossRefGoogle Scholar
  4. Allen RE, Merkel RA, Young RB (1979) Cellular aspects of muscle growth: myogenic cell proliferation. J Anim Sci 49(1):115–127PubMedGoogle Scholar
  5. Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995a) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78(5):1969–1976PubMedGoogle Scholar
  6. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995b) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312PubMedCrossRefGoogle Scholar
  7. Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J Cell Biol 137(5):1057–1068PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anderson JE (2006) The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol 209(Pt 12):2276–2292Google Scholar
  10. Anderson J, Pilipowicz O (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide 7(1):36–41PubMedCrossRefGoogle Scholar
  11. Anderson JE, Wozniak AC (2004) Satellite cell activation on fibers: modeling events in vivo – an invited review. Can J Physiol Pharmacol 82(5):300–310PubMedCrossRefGoogle Scholar
  12. Anderson JE, Bressler BH, Ovalle WK (1988) Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil 9(6):499–515PubMedCrossRefGoogle Scholar
  13. Anderson JE, Liu L, Kardami E (1991) Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Dev Biol 147(1):96–109PubMedCrossRefGoogle Scholar
  14. Anderson JE, McIntosh LM, Moor AN, Yablonka-Reuveni Z (1998) Levels of MyoD protein expression following injury of mdx and normal limb muscle are modified by thyroid hormone. J Histochem Cytochem 46(1):59–67PubMedCrossRefGoogle Scholar
  15. Anderson JE, Wozniak AC, Mizunoya W (2012) Single muscle-fiber isolation and culture for cellular, molecular, pharmacological, and evolutionary studies. Methods Mol Biol 798:85–102PubMedCrossRefGoogle Scholar
  16. Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Hedderick EF, Marr TG, Lin BM, Hourde C, Leinwand LA, Kuhl D, Foller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, de la Rosa DA, Lang F, Cohn RD (2013) Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 5(1):80–91PubMedPubMedCentralCrossRefGoogle Scholar
  17. Arber S, Burden SJ, Harris AJ (2002) Patterning of skeletal muscle. Curr Opin Neurobiol 12(1):100–103PubMedCrossRefGoogle Scholar
  18. Argiles JM, Orpi M, Busquets S, Lopez-Soriano FJ (2012) Myostatin: more than just a regulator of muscle mass. Drug Discov Today 17(13–14):702–709Google Scholar
  19. Asano T, Kaneko E, Shinozaki S, Imai Y, Shibayama M, Chiba T, Ai M, Kawakami A, Asaoka H, Nakayama T, Mano Y, Shimokado K (2007) Hyperbaric oxygen induces basic fibroblast growth factor and hepatocyte growth factor expression, and enhances blood perfusion and muscle regeneration in mouse ischemic hind limbs. Circ J 71(3):405–411PubMedCrossRefGoogle Scholar
  20. Atkins C, Pezzementi L (1993) Developmental changes in the molecular forms of acetylcholinesterase during the life-cycle of the lamprey Petromyzon marinus. Comp Biochem Physiol B: Biochem Mol Biol 106:369–372Google Scholar
  21. Barbero A, Benelli R, Minghelli S, Tosetti F, Dorcaratto A, Ponzetto C, Wernig A, Cullen MJ, Albini A, Noonan DM (2001) Growth factor supplemented matrigel improves ectopic skeletal muscle formation–a cell therapy approach. J Cell Physiol 186(2):183–192PubMedCrossRefGoogle Scholar
  22. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119(Pt 2):199–207PubMedCrossRefGoogle Scholar
  23. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bischoff R (1986a) A satellite cell mitogen from crushed adult muscle. Dev Biol 115(1):140–147PubMedCrossRefGoogle Scholar
  25. Bischoff R (1986b) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115(1):129–139PubMedCrossRefGoogle Scholar
  26. Bischoff R (1990) Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111(1):201–207PubMedCrossRefGoogle Scholar
  27. Bischoff R, Heintz C (1994) Enhancement of skeletal muscle regeneration. Dev Dyn 201(1):41–54PubMedCrossRefGoogle Scholar
  28. bou-Khalil R, Mounier R, Chazaud B (2010) Regulation of myogenic stem cell behavior by vessel cells: the “menage a trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9(5):892–896CrossRefGoogle Scholar
  29. Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA (2009) BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 335(1):93–105PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752PubMedCrossRefGoogle Scholar
  31. Brooks NE, Myburgh KH, Storey KB (2011) Myostatin levels in skeletal muscle of hibernating ground squirrels. J Exp Biol 214(15):2522–2527PubMedPubMedCentralCrossRefGoogle Scholar
  32. Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17(5):587–597PubMedCrossRefGoogle Scholar
  33. Busetto G, Buffelli M, Cangiano L, Cangiano A (2003) Effects of evoked and spontaneous motoneuronal firing on synapse competition and elimination in skeletal muscle. J Neurocytol 32(5–8):795–802PubMedCrossRefGoogle Scholar
  34. Campbell KP, Stull JT (2003) Skeletal muscle basement membrane-sarcolemma-cytoskeleton interaction minireview series. J Biol Chem 278(15):12599–12600PubMedCrossRefGoogle Scholar
  35. Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E (2004) Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117(Pt 1):73–84PubMedCrossRefGoogle Scholar
  36. Cassano M, Biressi S, Finan A, Benedetti L, Omes C, Boratto R, Martin F, Allegretti M, Broccoli V, Cusella De AG, Comoglio PM, Basilico C, Torrente Y, Michieli P, Cossu G, Sampaolesi M (2008) Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis. Plos One 3(9):e3223Google Scholar
  37. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238PubMedCrossRefGoogle Scholar
  38. Chazaud B (2010) Dual effect of HGF on satellite/myogenic cell quiescence. Focus on “High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo”. Am J Physiol Cell Physiol 298(3):C448–C449PubMedCrossRefGoogle Scholar
  39. Collins CA, Partridge TA (2005) Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle 4(10):1338–1341PubMedCrossRefGoogle Scholar
  40. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301PubMedCrossRefGoogle Scholar
  41. Collins CA, Zammit PS, Perez RA, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894PubMedCrossRefGoogle Scholar
  42. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239(1):79–94PubMedCrossRefGoogle Scholar
  43. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18(18):2231–2236PubMedPubMedCentralCrossRefGoogle Scholar
  44. Corrigan LJ, Lucas MC, Winfield IJ, Hoelzel AR (2011) Environmental factors associated with genetic and phenotypic divergence among sympatric populations of Arctic charr (Salvelinus alpinus). J Evol Biol 24:1906–1917PubMedCrossRefGoogle Scholar
  45. Corti S, Salani S, Del BR, Sironi M, Strazzer S, D’Angelo MG, Comi GP, Bresolin N, Scarlato G (2001) Chemotactic factors enhance myogenic cell migration across an endothelial monolayer. Exp Cell Res 268(1):36–44PubMedCrossRefGoogle Scholar
  46. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172(1):41–53PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673PubMedCrossRefGoogle Scholar
  48. Do MK, Sato Y, Shimizu N, Suzuki T, Shono J, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R (2011) Growth factor regulation of neural chemorepellent Sema3A expression in satellite cell cultures. Am J Physiol Cell Physiol 301(5):C1270–C1279PubMedCrossRefGoogle Scholar
  49. Do MK, Suzuki T, Gerelt B, Sato Y, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R (2012) Time-coordinated prevalence of extracellular HGF, FGF2 and TGF-beta3 in crush-injured skeletal muscle. Anim Sci J 83(10):712–717Google Scholar
  50. Dumont NA, Wang YX, von Maltazahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463PubMedCrossRefGoogle Scholar
  51. Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12(3):349–361PubMedCrossRefGoogle Scholar
  52. Duxson MJ, Sheard PW (1995) Formation of new myotubes occurs exclusively at the multiple innervation zones of an embryonic large muscle. Dev Dyn 204(4):391–405PubMedCrossRefGoogle Scholar
  53. Duxson MJ, Ross JJ, Harris AJ (1986) Transfer of differentiated synaptic terminals from primary myotubes to new-formed muscle cells during embryonic development in the rat. Neurosci Lett 71(2):147–152PubMedCrossRefGoogle Scholar
  54. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131PubMedCrossRefGoogle Scholar
  55. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823PubMedCrossRefGoogle Scholar
  56. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676PubMedCrossRefGoogle Scholar
  57. Fibbi G, D’Alessio S, Pucci M, Cerletti M, Del RM (2002) Growth factor-dependent proliferation and invasion of muscle satellite cells require the cell-associated fibrinolytic system. Biol Chem 383(1):127–136PubMedCrossRefGoogle Scholar
  58. Flann KL, Rathbone CR, Cole LC, Liu X, Allen RE, Rhoads RP (2014) Hypoxia simultaneously alters satellite cell-mediated angiogenesis and hepatocyte growth factor expression. J Cell Physiol 229(5):572–579PubMedCrossRefGoogle Scholar
  59. Florini JR, Magri KA (1989) Effects of growth factors on myogenic differentiation. Am J Physiol 256(4) Pt 1:C701–C711Google Scholar
  60. Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M, Ito T, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H (2010) Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176(5):2414–2424PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fukada S, Ma Y, Ohtani T, Watanabe Y, Murakami S, Yamaguchi M (2013) Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 4:317PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402(1):39–51PubMedCrossRefGoogle Scholar
  63. Grounds MD (1987) Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice. J Pathol 153(1):71–82PubMedCrossRefGoogle Scholar
  64. Grounds MD, McGeachie JK (1987) A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis. Cell Tissue Res 250(3):563–569PubMedCrossRefGoogle Scholar
  65. Grounds MD, McGeachie JK (1992) Skeletal muscle regeneration after crush injury in dystrophic mdx mice: an autoradiographic study. Muscle Nerve 15(5):580–586PubMedCrossRefGoogle Scholar
  66. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267(1):99–104PubMedCrossRefGoogle Scholar
  67. Gutierrez J, Cabrera D, Brandan E (2014) Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells. Skelet Muscle 4(1):5Google Scholar
  68. Hall TE, Smith P, Johnston IA (2004) Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259(3):255–270PubMedCrossRefGoogle Scholar
  69. Hara M, Tabata K, Suzuki T, Do MK, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R (2012) Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302(12):C1741–C1750PubMedCrossRefGoogle Scholar
  70. Harris AJ, Duxson MJ, Fitzsimons RB, Rieger F (1989) Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. Development 107(4):771–784PubMedGoogle Scholar
  71. Hayashi S, Aso H, Watanabe K, Nara H, Rose MT, Ohwada S, Yamaguchi T (2004) Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol 122(5):427–434PubMedCrossRefGoogle Scholar
  72. Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113(Pt 12):2299–2308PubMedGoogle Scholar
  73. Huang Z, Chen X, Yu B, He J, Chen D (2012) MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun 423(2):265–269PubMedCrossRefGoogle Scholar
  74. Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M (2010) Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS One 5(6):e10920Google Scholar
  75. Janke A, Upadhaya R, Snow WM, Anderson JE (2013) A new look at cytoskeletal NOS-1 and â-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev Dyn 242(12):1369–1381. doi: 10.1002/dvdy.24031
  76. Jansen JK, Fladby T (1990) The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog Neurobiol 34(1):39–90PubMedCrossRefGoogle Scholar
  77. Jennische E, Ekberg S, Matejka GL (1993) Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am J Physiol 265(1) Pt 1;C122–C128Google Scholar
  78. Johnson SE, Allen RE (1993) Proliferating cell nuclear antigen (PCNA) is expressed in activated rat skeletal muscle satellite cells. J Cell Physiol 154(1):39–43PubMedCrossRefGoogle Scholar
  79. Johnson SE, Allen RE (1995) Activation of skeletal muscle satellite cells and the role of fibroblast growth factor receptors. Exp Cell Res 219(2):449–453PubMedCrossRefGoogle Scholar
  80. Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209(Pt 12):2249–2264PubMedCrossRefGoogle Scholar
  81. Johnston IA, Hall TE (2004) Mechanisms of muscle development and responses to temperature change in fish larvae. In: Govoni JJ (ed) Development of form and function in fishes and the question of larval adaptation [40], pp 85–116. American Fisheries Society Symposium. Ref Type: Serial (Book, Monograph)Google Scholar
  82. Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212(Pt 12):1781–1793PubMedCrossRefGoogle Scholar
  83. Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214(Pt 10):1617–1628PubMedCrossRefGoogle Scholar
  84. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23(5):779–796PubMedGoogle Scholar
  85. Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T (2004) N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J Biol Chem 279(52):54862–54871PubMedCrossRefGoogle Scholar
  86. Kuang S, Kuroda K, Le GF, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lee AS, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, Gunning PW, Hardeman EC (2013) Aged skeletal muscle retains the ability to fully regenerate functional architecture. Bioarchitecture 3(2):25–37PubMedPubMedCentralCrossRefGoogle Scholar
  88. Leiter JR, Anderson JE (2010) Satellite cells are increasingly refractory to activation by nitric oxide and stretch in aged mouse-muscle cultures. Int J Biochem Cell Biol 42:132–136PubMedCrossRefGoogle Scholar
  89. Leiter JR, Peeler J, Anderson JE (2011) Exercise-induced muscle growth is muscle-specific and age-dependent. Muscle Nerve 43(6):828–838PubMedCrossRefGoogle Scholar
  90. Leiter JR, Upadhaya R, Anderson JE (2012) Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. Am J Physiol Cell Physiol 302(9):C1306–C1315PubMedCrossRefGoogle Scholar
  91. Leshem Y, Spicer DB, Gal-Levi R, Halevy O (2000) Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the cdk inhibitor p27. J Cell Physiol 184(1):101–109PubMedCrossRefGoogle Scholar
  92. Li Z, Peng J, Wang G, Yang Q, Yu H, Guo Q, Wang A, Zhao B, Lu S (2008) Effects of local release of hepatocyte growth factor on peripheral nerve regeneration in acellular nerve grafts. Exp Neurol 214(1):47–54PubMedCrossRefGoogle Scholar
  93. Lin DC, Hershey JD, Mattoon JS, Robbins CT (2012) Skeletal muscles of hibernating brown bears are unusually resistant to effects of denervation. J Exp Biol 215(12):2081–2087PubMedCrossRefGoogle Scholar
  94. Lomo T (2003) What controls the position, number, size, and distribution of neuromuscular junctions on rat muscle fibers? J Neurocytol 32(5–8):835–848PubMedCrossRefGoogle Scholar
  95. Luo D, Renault VM, Rando TA (2005) The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16(4-5):612–622PubMedCrossRefGoogle Scholar
  96. Matsumura K, Ohlendieck K, Ionasescu VV, Tome FM, Nonaka I, Burghes AH, Mora M, Kaplan JC, Fardeau M, Campbell KP (1993) The role of the dystrophin-glycoprotein complex in the molecular pathogenesis of muscular dystrophies. Neuromuscul Disord 3(5–6):533–535PubMedCrossRefGoogle Scholar
  97. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mauro A, Shafiq SA, Milhorat AT (1970) Regeneration of striated muscle, and myogenesis. Ekcerpta Medica, AmsterdamGoogle Scholar
  99. McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248(1):125–130PubMedCrossRefGoogle Scholar
  100. McIntosh L, Granberg KE, Briere KM, Anderson JE (1998a) Nuclear magnetic resonance spectroscopy study of muscle growth, mdx dystrophy and glucocorticoid treatments: correlation with repair. NMR Biomed 11(1):1–10PubMedCrossRefGoogle Scholar
  101. McIntosh LM, Baker RE, Anderson JE (1998b) Magnetic resonance imaging of regenerating and dystrophic mouse muscle. Biochem Cell Biol 76(2–3):532–541PubMedCrossRefGoogle Scholar
  102. McIntosh LM, Garrett KL, Megeney L, Rudnicki MA, Anderson JE (1998c) Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-deficient muscles. Anat Rec 252(2):311–324PubMedCrossRefGoogle Scholar
  103. Merly F, Lescaudron L, Rouaud T, Crossin F, Gardahaut MF (1999) Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 22(6):724–732PubMedCrossRefGoogle Scholar
  104. Merrifield P, Atkinson BG (2000) Phylogenetic diversity of myosin expression in muscle. Microsc Res Tech 50(6):425–429PubMedCrossRefGoogle Scholar
  105. Meyerrochow VB, Ingram JR (1993) Red white muscle distribution and fiber growth dynamics – a comparison between Lacustrine and Riverine populations of the Southern smelt Retropinna-Retropinna Richardson. Proc Biol Sci 252(1334):85–92CrossRefGoogle Scholar
  106. Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181PubMedGoogle Scholar
  107. Missias AC, Chu GC, Klocke BJ, Sanes JR, Merlie JP (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch. Dev Biol 179(1):223–238PubMedCrossRefGoogle Scholar
  108. Moor AN, Rector ES, Anderson JE (2000) Cell cycle behavior and MyoD expression in response to T3 differ in normal and mdx dystrophic primary muscle cell cultures. Microsc Res Tech 48(3–4):204–212PubMedCrossRefGoogle Scholar
  109. Mylona E, Jones KA, Mills ST, Pavlath GK (2006) CD44 regulates myoblast migration and differentiation. J Cell Physiol 209(2):314–321PubMedCrossRefGoogle Scholar
  110. O’Brien LE, Tang K, Kats ES, Schutz-Geschwender A, Lipschutz JH, Mostov KE (2004) ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Dev Cell 7(1):21–32PubMedCrossRefGoogle Scholar
  111. Paul AC, Sheard PW, Duxson MJ (2004) Development of a mammalian series-fibered muscle. Anat Rec A Discov Mol Cell Evol Biol 278(2):571–578PubMedCrossRefGoogle Scholar
  112. Peplow PV, Chatterjee MP (2013) A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine 62(1):1–21PubMedCrossRefGoogle Scholar
  113. Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 187:27–33. Ref Type: Journal (Full)Google Scholar
  114. Pisconti A, Cornelison DD, Olguin HC, Antwine TL, Olwin BB (2010) Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 190(3):427–441PubMedPubMedCentralCrossRefGoogle Scholar
  115. Price ER, Bauchinger U, Zajac DM, Cerasale DJ, McFarlan JT, Gerson AR, McWilliams SR, Guglielmo CG (2011) Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression. J Exp Biol 214(17):2823–2831PubMedCrossRefGoogle Scholar
  116. Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JL, Sanderson RD (2013) The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 280(10):2294–2306PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149(5):995–998PubMedPubMedCentralCrossRefGoogle Scholar
  118. Reed SA, Sandesara PB, Senf SM, Judge AR (2012) Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 26(3):987–1000PubMedPubMedCentralCrossRefGoogle Scholar
  119. Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106(7):2194–2199PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rudnicki MA, Le GF, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331PubMedCrossRefGoogle Scholar
  121. Sakaguchi S, Shono JI, Suzuki T, Sawano S, Anderson JE, Do MK, Ohtsubo H, Mizunoya W, Sato Y, Nakamura M, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R (2014) Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int J Biochem Cell Biol 54:272–285PubMedCrossRefGoogle Scholar
  122. Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218(2):115–124PubMedCrossRefGoogle Scholar
  123. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786PubMedCrossRefGoogle Scholar
  124. Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK, Dhawan J (2009) MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci U S A 106(12):4719–4724PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sellathurai J, Cheedipudi S, Dhawan J, Schroder HD (2013) A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts. Plos One 8(5):e64067Google Scholar
  126. Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23(2):239–245PubMedCrossRefGoogle Scholar
  127. Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27(10):2527–2538PubMedPubMedCentralCrossRefGoogle Scholar
  128. Siegel AL, Kuhlmann PK, Cornelison DD (2011) Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet Muscle 1(1):1–7CrossRefGoogle Scholar
  129. Smith CK, Janney MJ, Allen RE (1994) Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159(2):379–385PubMedCrossRefGoogle Scholar
  130. Smythe GM, Shavlakadze T, Roberts P, Davies MJ, McGeachie JK, Grounds MD (2008) Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13–21 months) mice. Exp Gerontol 43(6):550–562PubMedCrossRefGoogle Scholar
  131. Snow WM, Anderson JE, Jakobson LS (2013a) Neuropsychological and neurobehavioral functioning in Duchenne muscular dystrophy: a review. Neurosci Biobehav Rev 37(5):743–752PubMedCrossRefGoogle Scholar
  132. Snow WM, Fry M, Anderson JE (2013b) Increased density of dystrophin protein in the lateral versus the vermal mouse cerebellum. Cell Mol Neurobiol 33(4):513–520PubMedCrossRefGoogle Scholar
  133. Srivastava S, Mishra RK, Dhawan J (2010) Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 6(1):37–47PubMedPubMedCentralCrossRefGoogle Scholar
  134. Stark DA, Karvas RM, Siegel AL, Cornelison DD (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138(24):5279–5289PubMedPubMedCentralCrossRefGoogle Scholar
  135. Starr DA, Fischer JA (2005) KASH ’n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 27(11):1136–1146PubMedCrossRefGoogle Scholar
  136. Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sanger AM, Stoiber W (2011) Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol 214(Pt 11):1791–1801PubMedPubMedCentralCrossRefGoogle Scholar
  137. Subramaniam S, Sreenivas P, Cheedipudi S, Reddy VR, Shashidhara LS, Chilukoti RK, Mylavarapu M, Dhawan J (2013) Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest. Plos One 8(6):e65097Google Scholar
  138. Sugiura T, Kawaguchi Y, Soejima M, Katsumata Y, Gono T, Baba S, Kawamoto M, Murakawa Y, Yamanaka H, Hara M (2010) Increased HGF and c-Met in muscle tissues of polymyositis and dermatomyositis patients: beneficial roles of HGF in muscle regeneration. Clin Immunol 136(3):387–399PubMedCrossRefGoogle Scholar
  139. Sumino Y, Hirata Y, Sato F, Mimata H (2007) Growth mechanism of satellite cells in human urethral rhabdosphincter. Neurourol Urodyn 26(4):552–561PubMedCrossRefGoogle Scholar
  140. Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H (2002) Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 292(3):709–714PubMedCrossRefGoogle Scholar
  141. Suzuki T, Do MK, Sato Y, Ojima K, Hara M, Mizunoya W, Nakamura M, Furuse M, Ikeuchi Y, Anderson JE, Tatsumi R (2013) Comparative analysis of semaphorin 3A in soleus and EDL muscle satellite cells in vitro toward understanding its role in modulating myogenin expression. Int J Biochem Cell Biol 45(2):476–482PubMedCrossRefGoogle Scholar
  142. Tatsumi R (2010) Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 81(1):11–20PubMedCrossRefGoogle Scholar
  143. Tatsumi R, Allen RE (2004) Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30(5):654–658PubMedCrossRefGoogle Scholar
  144. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128PubMedCrossRefGoogle Scholar
  145. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114PubMedCrossRefGoogle Scholar
  146. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13(8):2909–2918PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tatsumi R, Sankoda Y, Anderson JE, Sato Y, Mizunoya W, Shimizu N, Suzuki T, Yamada M, Rhoads RP Jr, Ikeuchi Y, Allen RE (2009a) Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol 297(2):C238–C252PubMedCrossRefGoogle Scholar
  148. Tatsumi R, Wuollet al, Tabata K, Nishimura S, Tabata S, Mizunoya W, Ikeuchi Y, Allen RE (2009b) A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol 296(4):C922–C929Google Scholar
  149. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243PubMedCrossRefGoogle Scholar
  150. Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11(12):834–848PubMedCrossRefGoogle Scholar
  151. Tzur YB, Wilson KL, Gruenbaum Y (2006) SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 7(10):782–788PubMedCrossRefGoogle Scholar
  152. Villena J, Brandan E (2004) Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. J Cell Physiol 198(2):169–178PubMedCrossRefGoogle Scholar
  153. Volonte D, Liu Y, Galbiati F (2005) The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J 19(2):237–239PubMedGoogle Scholar
  154. Watanabe I, Okada S (1967) Stationary phase of cultured mammalian cells (L5178Y). J Cell Biol 35(2):285–294PubMedPubMedCentralCrossRefGoogle Scholar
  155. Webster MT, Fan CM (2013) c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS One 8(11):e81757Google Scholar
  156. Williams RS, Annex BH (2004) Plasticity of myocytes and capillaries: a possible coordinating role for VEGF. Circ Res 95(1):7–8PubMedCrossRefGoogle Scholar
  157. Wozniak AC, Anderson JE (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83(5):674–676PubMedCrossRefGoogle Scholar
  158. Wozniak AC, Anderson JE (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236(1):240–250PubMedCrossRefGoogle Scholar
  159. Wozniak AC, Anderson JE (2009) The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 41(3):625–631PubMedCrossRefGoogle Scholar
  160. Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE (2003) C-met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51(11):1437–1445PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31(3):283–300PubMedCrossRefGoogle Scholar
  162. Wund MA, Baker JA, Clancy B, Golub JL, Foster SA (2008) A test of the “Flexible stem” model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am Nat 172:449–462PubMedCrossRefGoogle Scholar
  163. Xie G, Karaca G, Swiderska-Syn M, Michelotti GA, Kruger L, Chen Y, Premont RT, Choi SS, Diehl AM (2013) Cross-talk between notch and hedgehog regulates hepatic stellate cell fate. Hepatology 58(5):1801–1813PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 59(12):1041–1059PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi S, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE (2010) High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol Cell Physiol 298(3):C465–C476PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang H, Anderson JE (2014) Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). J Exp Biol 217(Pt 11):1910–1917PubMedCrossRefGoogle Scholar
  167. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134(5):901–908PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations